[1] MOORE C J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat [J]. Environmental Research, 2008, 108(2): 131-139. doi: 10.1016/j.envres.2008.07.025
[2] KARLSSON T M, VETHAAK A D, ALMROTH B C, et al. Screening for microplastics in sediment, water, marine invertebrates and fish: Method development and microplastic accumulation [J]. Marine Pollution Bulletin, 2017, 122(1/2): 403-408.
[3] IVLEVA N P, WIESHEU A C, NIESSNER R. Microplastic in aquatic ecosystems [J]. Angewandte Chemie International Edition, 2017, 56(7): 1720-1739. doi: 10.1002/anie.201606957
[4] de SOUZA MACHADO A A, KLOAS W, ZARFL C, et al. Microplastics as an emerging threat to terrestrial ecosystems [J]. Global Change Biology, 2018, 24(4): 1405-1416. doi: 10.1111/gcb.14020
[5] REJMAN J, OBERLE V, ZUHORN I S, et al. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis[J]. Biochemical Journal, 2004, 377(Pt 1): 159-169.
[6] dos SANTOS T, VARELA J, LYNCH I, et al. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines [J]. PLoS One, 2011, 6(9): e24438. doi: 10.1371/journal.pone.0024438
[7] RAGUSA A, SVELATO A, SANTACROCE C, et al. Plasticenta: First evidence of microplastics in human placenta [J]. Environment International, 2021, 146: 106274. doi: 10.1016/j.envint.2020.106274
[8] PRIETL B, MEINDL C, ROBLEGG E, et al. Nano-sized and micro-sized polystyrene particles affect phagocyte function [J]. Cell Biology and Toxicology, 2014, 30(1): 1-16. doi: 10.1007/s10565-013-9265-y
[9] XU M K, HALIMU G, ZHANG Q R, et al. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell [J]. Science of the Total Environment, 2019, 694: 133794. doi: 10.1016/j.scitotenv.2019.133794
[10] WU B, WU X M, LIU S, et al. Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells [J]. Chemosphere, 2019, 221: 333-341. doi: 10.1016/j.chemosphere.2019.01.056
[11] STOCK V, BÖHMERT L, LISICKI E, et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo [J]. Archives of Toxicology, 2019, 93(7): 1817-1833. doi: 10.1007/s00204-019-02478-7
[12] YONG C Q Y, VALIYAVEETTIL S, TANG B L. Toxicity of microplastics and nanoplastics in mammalian systems [J]. International Journal of Environmental Research and Public Health, 2020, 17(5): 1509. doi: 10.3390/ijerph17051509
[13] BOTTERELL Z L R, BEAUMONT N, DORRINGTON T, et al. Bioavailability and effects of microplastics on marine zooplankton: A review [J]. Environmental Pollution, 2019, 245: 98-110. doi: 10.1016/j.envpol.2018.10.065
[14] SCHWAFERTS C, NIESSNER R, ELSNER M, et al. Methods for the analysis of submicrometer- and nanoplastic particles in the environment [J]. TrAC Trends in Analytical Chemistry, 2019, 112: 52-65. doi: 10.1016/j.trac.2018.12.014
[15] 王昆, 林坤德, 袁东星. 环境样品中微塑料的分析方法研究进展 [J]. 环境化学, 2017, 36(1): 27-36. doi: 10.7524/j.issn.0254-6108.2017.01.2016051704 WANG K, LIN K D, YUAN D X. Research progress on the analysis of microplastics in the environment [J]. Environmental Chemistry, 2017, 36(1): 27-36(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.01.2016051704
[16] 徐昊垠, 董春明. 悬浮聚合制备微米级聚苯乙烯微球 [J]. 化工生产与技术, 2010, 17(3): 24-26,70. doi: 10.3969/j.issn.1006-6829.2010.03.0008 XU H Y, DONG C M. Synthesis of micron polystyrene microspheres by suspension polymerization [J]. Chemical Production and Technology, 2010, 17(3): 24-26,70(in Chinese). doi: 10.3969/j.issn.1006-6829.2010.03.0008
[17] 张心亚, 孙志娟, 黄洪, 等. 乳液聚合技术最新研究进展 [J]. 合成材料老化与应用, 2006, 35(1): 38-43,58. doi: 10.3969/j.issn.1671-5381.2006.01.011 ZHANG X Y, SUN Z J, HUANG H, et al. Research progress of emulsion polymerization technology [J]. Synthetic Materials Aging and Application, 2006, 35(1): 38-43,58(in Chinese). doi: 10.3969/j.issn.1671-5381.2006.01.011
[18] 张凯, 雷毅, 王宇光, 等. 单分散聚苯乙烯微球的制备及影响因素研究 [J]. 功能高分子学报, 2002, 15(2): 189-193. doi: 10.3969/j.issn.1008-9357.2002.02.015 ZHANG K, LEI Y, WANG Y G, et al. Studies of the preparation of monodisperse polystyrene microspheres and its influence factors [J]. Journal of Functional Polymers, 2002, 15(2): 189-193(in Chinese). doi: 10.3969/j.issn.1008-9357.2002.02.015
[19] 张荣荣, 徐自力. 荧光微球的制备技术及其应用进展 [J]. 高分子通报, 2009(1): 63-70. doi: 10.14028/j.cnki.1003-3726.2009.01.005 ZHANG R R, XU Z L. Development of preparations and applications of fluorescent microsphere [J]. Polymer Bulletin, 2009(1): 63-70(in Chinese). doi: 10.14028/j.cnki.1003-3726.2009.01.005
[20] HONG Y N, LAM J W, TANG B Z. Aggregation-induced emission [J]. Chemical Society Reviews, 2011, 40(11): 5361-5388. doi: 10.1039/c1cs15113d
[21] 张双, 秦安军, 孙景志, 等. 聚集诱导发光机理研究 [J]. 化学进展, 2011, 23(4): 623-636. ZHANG S, QIN A J, SUN J Z, et al. Mechanism study of aggregation-induced emission [J]. Progress in Chemistry, 2011, 23(4): 623-636(in Chinese).
[22] YAN N, TANG B Z, WANG W X. Cell cycle control of nanoplastics internalization in phytoplankton [J]. ACS Nano, 2021, 15(7): 12237-12248. doi: 10.1021/acsnano.1c03879
[23] MITRANO D M, BELTZUNG A, FREHLAND S, et al. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems [J]. Nature Nanotechnology, 2019, 14(4): 362-368. doi: 10.1038/s41565-018-0360-3
[24] ANDO K, KAWAGUCHI H. High-performance fluorescent particles prepared via miniemulsion polymerization [J]. Journal of Colloid and Interface Science, 2005, 285(2): 619-626. doi: 10.1016/j.jcis.2004.12.020
[25] 彭超. 含稀土配合物的荧光编码聚苯乙烯微球的制备与表征[D]. 天津: 天津大学, 2012. PENG C. Rare earth complex-encoded fluorescent polystyrene microspheres: Preparation and characterization[D]. Tianjin: Tianjin University, 2012(in Chinese).
[26] 田莉莉. 基于C-14同位素示踪技术的聚苯乙烯纳米塑料光降解研究[D]. 南京: 南京大学, 2020. TIAN L L. Photodegradation of polystyrene nanoplastics using C-14 isotope tracer[D]. Nanjing: Nanjing University, 2020(in Chinese).
[27] TIAN L L, KOLVENBACH B, CORVINI N, et al. Mineralisation of 14C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment [J]. New Biotechnology, 2017, 38: 101-105. doi: 10.1016/j.nbt.2016.07.008
[28] LABORDA F, BOLEA E, CEPRIÁ G, et al. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples [J]. Analytica Chimica Acta, 2016, 904: 10-32. doi: 10.1016/j.aca.2015.11.008
[29] HERNANDEZ L M, YOUSEFI N, TUFENKJI N. Are there nanoplastics in your personal care products? [J]. Environmental Science & Technology Letters, 2017, 4(7): 280-285.
[30] HÖCHERL A, DASS M, LANDFESTER K, et al. Competitive cellular uptake of nanoparticles made from polystyrene, poly(methyl methacrylate), and polylactide [J]. Macromolecular Bioscience, 2012, 12(4): 454-464. doi: 10.1002/mabi.201100337
[31] NIGAMATZYANOVA L, FAKHRULLIN R. Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: A Caenorhabditis elegans study [J]. Environmental Pollution, 2021, 271: 116337. doi: 10.1016/j.envpol.2020.116337
[32] 杨广烈. 荧光与荧光显微镜 [J]. 光学仪器, 2001, 23(2): 18-29. doi: 10.3969/j.issn.1005-5630.2001.02.005 YANG G L. Fluorescence and fluorescence microscope [J]. Optical Instruments, 2001, 23(2): 18-29(in Chinese). doi: 10.3969/j.issn.1005-5630.2001.02.005
[33] ABIHSSIRA-GARCÍA I S, PARK Y, KIRON V, et al. Fluorescent microplastic uptake by immune cells of Atlantic salmon (Salmo salar L. ) [J]. Frontiers in Environmental Science, 2020, 8: 560206. doi: 10.3389/fenvs.2020.560206
[34] PADDOCK S W. Principles and practices of laser scanning confocal microscopy [J]. Molecular Biotechnology, 2000, 16(2): 127-149. doi: 10.1385/MB:16:2:127
[35] HWANG J, CHOI D, HAN S, et al. Potential toxicity of polystyrene microplastic particles [J]. Scientific Reports, 2020, 10: 7391. doi: 10.1038/s41598-020-64464-9
[36] JEON S, CLAVADETSCHER J, LEE D K, et al. Surface charge-dependent cellular uptake of polystyrene nanoparticles [J]. Nanomaterials (Basel, Switzerland), 2018, 8(12): 1028. doi: 10.3390/nano8121028
[37] 赵书涛, 武晓东, 王策, 等. 流式细胞仪的原理、应用及最新进展 [J]. 现代生物医学进展, 2011, 11(22): 4378-4381. doi: 10.13241/j.cnki.pmb.2011.22.001 ZHAO S T, WU X D, WANG C, et al. Principles, applications and latest developments of flow cytometer [J]. Progress in Modern Biomedicine, 2011, 11(22): 4378-4381(in Chinese). doi: 10.13241/j.cnki.pmb.2011.22.001
[38] VARELA J A, BEXIGA M G, ÅBERG C, et al. Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells [J]. Journal of Nanobiotechnology, 2012, 10: 39. doi: 10.1186/1477-3155-10-39
[39] AMMANN A A. Inductively coupled plasma mass spectrometry (ICP MS): A versatile tool [J]. Journal of Mass Spectrometry, 2007, 42(4): 419-427. doi: 10.1002/jms.1206
[40] REDONDO-HASSELERHARM P E, VINK G, MITRANO D M, et al. Metal-doping of nanoplastics enables accurate assessment of uptake and effects on Gammarus pulex [J]. Environmental Science. Nano, 2021, 8(6): 1761-1770. doi: 10.1039/D1EN00068C
[41] HE S, CHI H Y, LI C J, et al. Distribution, bioaccumulation, and trophic transfer of palladium-doped nanoplastics in a constructed freshwater ecosystem [J]. Environmental Science:Nano, 2022, 9(4): 1353-1363. doi: 10.1039/D1EN00940K
[42] ABDOLAHPUR MONIKH F, CHUPANI L, VIJVER M G, et al. Parental and trophic transfer of nanoscale plastic debris in an assembled aquatic food chain as a function of particle size [J]. Environmental Pollution, 2021, 269: 116066. doi: 10.1016/j.envpol.2020.116066
[43] FLORES K, TURLEY R S, VALDES C, et al. Environmental applications and recent innovations in single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) [J]. Applied Spectroscopy Reviews, 2021, 56(1): 1-26. doi: 10.1080/05704928.2019.1694937
[44] 张向阳, 郭华良, 刘福亮, 等. 液体闪烁谱仪的检定方法 [J]. 核电子学与探测技术, 2010, 30(6): 779-781,786. doi: 10.3969/j.issn.0258-0934.2010.06.015 ZHANG X Y, GUO H L, LIU F L, et al. A calibration method of liquid scintillation spectrometry [J]. Nuclear Electronics & Detection Technology, 2010, 30(6): 779-781,786(in Chinese). doi: 10.3969/j.issn.0258-0934.2010.06.015
[45] AL-SID-CHEIKH M, ROWLAND S J, KAEGI R, et al. Synthesis of 14C-labelled polystyrene nanoplastics for environmental studies [J]. Communications Materials, 2020, 1: 97. doi: 10.1038/s43246-020-00097-9
[46] ZAMORA-PEREZ P, TSOUTSI D, XU R X, et al. Hyperspectral-enhanced dark field microscopy for single and collective nanoparticle characterization in biological environments [J]. Materials (Basel, Switzerland), 2018, 11(2): 243. doi: 10.3390/ma11020243
[47] GIANNONI L, LANGE F, TACHTSIDIS I. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: Past, current and future developments [J]. Journal of Optics, 2018, 20(4): 044009. doi: 10.1088/2040-8986/aab3a6
[48] FAKHRULLIN R, NIGAMATZYANOVA L, FAKHRULLINA G. Dark-field/hyperspectral microscopy for detecting nanoscale particles in environmental nanotoxicology research [J]. Science of the Total Environment, 2021, 772: 145478. doi: 10.1016/j.scitotenv.2021.145478
[49] ISHMUKHAMETOV I, NIGAMATZYANOVA L, FAKHRULLINA G, et al. Label-free identification of microplastics in human cells: Dark-field microscopy and deep learning study [J]. Analytical and Bioanalytical Chemistry, 2022, 414(3): 1297-1312. doi: 10.1007/s00216-021-03749-y
[50] AHLINDER L, WIKLUND LINDSTRÖM S, LEJON C, et al. Noise removal with maintained spatial resolution in Raman images of cells exposed to submicron polystyrene particles [J]. Nanomaterials (Basel, Switzerland), 2016, 6(5): 83. doi: 10.3390/nano6050083
[51] RIBEIRO-CLARO P, NOLASCO M M, ARAÚJO C. Characterization of microplastics by Raman spectroscopy[M]//Characterization and Analysis of Microplastics. Amsterdam: Elsevier, 2017: 119-151.
[52] EVANOFF D D Jr, HECKEL J, CALDWELL T P, et al. Monitoring DPA release from a single germinating Bacillus subtilis endospore via surface-enhanced Raman scattering microscopy [J]. Journal of the American Chemical Society, 2006, 128(39): 12618-12619. doi: 10.1021/ja0642717
[53] CHENG J X, JIA Y K, ZHENG G F, et al. Laser-scanning coherent anti-stokes Raman scattering microscopy and applications to cell biology [J]. Biophysical Journal, 2002, 83(1): 502-509. doi: 10.1016/S0006-3495(02)75186-2
[54] FREUDIGER C W, MIN W, SAAR B G, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy [J]. Science, 2008, 322(5909): 1857-1861. doi: 10.1126/science.1165758
[55] BAE K, ZHENG W, HUANG Z W. Spatial light-modulated stimulated Raman scattering (SLM-SRS) microscopy for rapid multiplexed vibrational imaging [J]. Theranostics, 2020, 10(1): 312-322. doi: 10.7150/thno.38551
[56] ZHANG D L, WANG P, SLIPCHENKO M N, et al. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy [J]. Accounts of Chemical Research, 2014, 47(8): 2282-2290. doi: 10.1021/ar400331q
[57] HUANG B, YAN S, XIAO L, et al. Label-free imaging of nanoparticle uptake competition in single cells by hyperspectral stimulated Raman scattering [J]. Small, 2018, 14(10): 1703246. doi: 10.1002/smll.201703246
[58] CHOI D S, LIM S, PARK J S, et al. Label-free live-cell imaging of internalized microplastics and cytoplasmic organelles with multicolor CARS microscopy [J]. Environmental Science & Technology, 2022, 56(5): 3045-3055.
[59] LÖDER M G J, KUCZERA M, MINTENIG S, et al. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples [J]. Environmental Chemistry, 2015, 12(5): 563-581. doi: 10.1071/EN14205
[60] MAJEWSKY M, BITTER H, EICHE E, et al. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC) [J]. Science of the Total Environment, 2016, 568: 507-511. doi: 10.1016/j.scitotenv.2016.06.017
[61] FRIES E, DEKIFF J H, WILLMEYER J, et al. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy [J]. Environmental Science. Processes & Impacts, 2013, 15(10): 1949-1956.
[62] DUEMICHEN E, BRAUN U, KRAEMER R, et al. Thermal extraction combined with thermal desorption: A powerful tool to investigate the thermo-oxidative degradation of polyamide 66 materials [J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 288-298. doi: 10.1016/j.jaap.2015.08.006