[1] PANG N N, GAO J, CHE F, et al. Cause of PM2.5 pollution during the 2016-2017 heating season in Beijing, Tianjin, and Langfang, China [J]. Journal of Environmental Sciences, 2020, 95: 201-209. doi: 10.1016/j.jes.2020.03.024
[2] ZHANG Y L, ZHU B, GAO J H, et al. The source apportionment of primary PM2.5 in an aerosol pollution event over Beijing-Tianjin-Hebei region using WRF-chem, China [J]. Aerosol and Air Quality Research, 2017, 17(12): 2966-2980. doi: 10.4209/aaqr.2016.10.0442
[3] ZHANG Q, QUAN J N, TIE X X, et al. Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China [J]. Science of the Total Environment, 2015, 502: 578-584. doi: 10.1016/j.scitotenv.2014.09.079
[4] TAO J, GAO J, ZHANG L, et al. PM2.5 pollution in a megacity of southwest China: Source apportionment and implication [J]. Atmospheric Chemistry and Physics, 2014, 14(16): 8679-8699. doi: 10.5194/acp-14-8679-2014
[5] HUANG X J, ZHANG J K, LUO B, et al. Water-soluble ions in PM2.5 during spring haze and dust periods in Chengdu, China: Variations, nitrate formation and potential source areas [J]. Environmental Pollution, 2018, 243: 1740-1749. doi: 10.1016/j.envpol.2018.09.126
[6] LIU J, WU D, FAN S J, et al. A one-year, on-line, multi-site observational study on water-soluble inorganic ions in PM2.5 over the Pearl River Delta region, China [J]. Science of the Total Environment, 2017, 601/602: 1720-1732. doi: 10.1016/j.scitotenv.2017.06.039
[7] 于谨铖, 李建熹, 苏枞枞, 等. 沈阳市大气PM2.5中水溶性离子的季节变化特征 [J]. 环境化学, 2021, 40(12): 3733-3742. doi: 10.7524/j.issn.0254-6108.2021042701 YU J C, LI J X, SU Z Z, et al. Seasonal variation of water soluble ions in PM2.5 in Shenyang [J]. Environmental Chemistry, 2021, 40(12): 3733-3742(in Chinese). doi: 10.7524/j.issn.0254-6108.2021042701
[8] WU P, HUANG X J, ZHANG J K, et al. Characteristics and formation mechanisms of autumn haze pollution in Chengdu based on high time-resolved water-soluble ion analysis [J]. Environmental Science and Pollution Research International, 2019, 26(3): 2649-2661. doi: 10.1007/s11356-018-3630-6
[9] 姚青, 刘子锐, 韩素芹, 等. 天津冬季一次重污染过程颗粒物中水溶性离子粒径分布特征 [J]. 环境科学, 2017, 38(12): 4958-4967. doi: 10.13227/j.hjkx.201702097 YAO Q, LIU Z R, HAN S Q, et al. Characteristics of the size distribution of water-soluble ions during a heavy pollution episode in the winter in Tianjin [J]. Environmental Science, 2017, 38(12): 4958-4967(in Chinese). doi: 10.13227/j.hjkx.201702097
[10] 邵玄逸, 王晓琦, 钟嶷盛, 等. 京津冀典型城市冬季人为源减排与气象条件对PM2.5污染影响 [J]. 环境科学, 2021, 42(9): 4095-4103. SHAO X Y, WANG X Q, ZHONG Y S, et al. Impacts of anthropogenic emission reduction and meteorological conditions on PM2.5 pollution in typical cities of Beijing-Tianjin-Hebei in winter [J]. Environmental Science, 2021, 42(9): 4095-4103(in Chinese).
[11] WANG T Y, HUANG X, WANG Z L, et al. Secondary aerosol formation and its linkage with synoptic conditions during winter haze pollution over Eastern China [J]. Science of the Total Environment, 2020, 730: 138888. doi: 10.1016/j.scitotenv.2020.138888
[12] WANG X Q, WEI W, CHENG S Y, et al. Characteristics of PM2.5 and SNA components and meteorological factors impact on air pollution through 2013-2017 in Beijing, China [J]. Atmospheric Pollution Research, 2019, 10(6): 1976-1984. doi: 10.1016/j.apr.2019.09.004
[13] 赵鹏, 解静芳, 王淑楠, 等. 太原市采暖季PM2.5中水溶性无机离子污染特征及来源解析 [J]. 环境化学, 2021, 40(11): 3482-3490. doi: 10.7524/j.issn.0254-6108.2020070907 ZHAO P, XIE J F, WANG S N, et al. Pollution characteristics and source apportionment of water-soluble inorganic ions in PM2.5 in Taiyuan City during the heating period [J]. Environmental Chemistry, 2021, 40(11): 3482-3490(in Chinese). doi: 10.7524/j.issn.0254-6108.2020070907
[14] LUAN T, GUO X L, GUO L J, et al. Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog–haze mixed events in Beijing [J]. Atmospheric Chemistry and Physics, 2018, 18(1): 203-225. doi: 10.5194/acp-18-203-2018
[15] FU G Q, XU W Y, YANG R F, et al. The distribution and trends of fog and haze in the North China Plain over the past 30 years [J]. Atmospheric Chemistry and Physics, 2014, 14(21): 11949-11958. doi: 10.5194/acp-14-11949-2014
[16] 杨志文, 吴琳, 元洁, 等. 2015年春节期间天津烟花爆竹燃放对空气质量的影响 [J]. 中国环境科学, 2017, 37(1): 69-75. YANG Z W, WU L, YUAN J, et al. Effect of fireworks on the air quality during the Spring Festival of 2015 in Tianjin City [J]. China Environmental Science, 2017, 37(1): 69-75(in Chinese).
[17] ZHANG T, CHE H Z, GONG Z Q, et al. The dominant mechanism of the explosive rise of PM2.5 after significant pollution emissions reduction in Beijing from 2017 to the COVID-19 pandemic in 2020 [J]. Atmospheric Pollution Research, 2021, 12(2): 272-281. doi: 10.1016/j.apr.2020.11.008
[18] 赵雪, 沈楠驰, 李令军, 等. COVID-19疫情期间京津冀大气污染物变化及影响因素分析 [J]. 环境科学, 2021, 42(3): 1205-1214. doi: 10.13227/j.hjkx.202007249 ZHAO X, SHEN N C, LI L J, et al. Analysis of changes and factors influencing air pollutants in the Beijing-Tianjin-Hebei region during the COVID-19 pandemic [J]. Environmental Science, 2021, 42(3): 1205-1214(in Chinese). doi: 10.13227/j.hjkx.202007249
[19] HUANG X, DING A J, GAO J, et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China [J]. National Science Review, 2020, 8(2): nwaa137.
[20] 逯世泽, 史旭荣, 薛文博, 等. 新冠肺炎疫情期间气象条件和排放变化对PM2.5的影响 [J]. 环境科学, 2021, 42(7): 3099-3106. LU S Z, SHI X R, XUE W B, et al. Impacts of meteorology and emission variations on PM2.5 concentration throughout the country during the 2020 epidemic period [J]. Environmental Science, 2021, 42(7): 3099-3106(in Chinese).
[21] DAI Q L, DING J, HOU L L, et al. Haze episodes before and during the COVID-19 shutdown in Tianjin, China: Contribution of fireworks and residential burning [J]. Environmental Pollution, 2021, 286: 117252. doi: 10.1016/j.envpol.2021.117252
[22] SHAO M, DAI Q L, YU Z J, et al. Responses in PM2.5 and its chemical components to typical unfavorable meteorological events in the suburban area of Tianjin, China [J]. Science of the Total Environment, 2021, 788: 147814. doi: 10.1016/j.scitotenv.2021.147814
[23] 王鑫龙, 李星, 杨兴川, 等. 天津市PM2.5水溶性无机离子污染特征与来源分析 [J]. 环境污染与防治, 2019, 41(10): 1223-1226. WANG X L, LI X, YANG X C, et al. The pollution characteristics and source analysis of PM2.5 water-soluble inorganic ions in Tianjin [J]. Environmental Pollution & Control, 2019, 41(10): 1223-1226(in Chinese).
[24] CAI S Y, WANG Y J, ZHAO B, et al. The impact of the “Air Pollution Prevention and Control Action Plan” on PM2.5 concentrations in Jing-Jin-Ji region during 2012-2020 [J]. Science of the Total Environment, 2017, 580: 197-209. doi: 10.1016/j.scitotenv.2016.11.188
[25] 丁净, 唐颖潇, 郝天依, 等. 天津市冬季空气湿度对PM2.5和能见度的影响 [J]. 环境科学, 2021, 42(11): 5143-5151. DING J, TANG Y X, HAO T Y, et al. Impact of air humidity on PM2.5 mass concentration and visibility during winter in Tianjin [J]. Environmental Science, 2021, 42(11): 5143-5151(in Chinese).
[26] 天津市生态环境局. 2021年天津市生态环境状况公报 2021[R]. 天津市生态环境局. 2022. Tianjin Ecology and Environment Bureau. Tianjin Ecology and Environment Statement 2021[R]. Tianjin Ecology and Environment Bureau. 2022(in Chinese).
[27] FENG X Q, LI Q K, TAO Y L, et al. Impact of Coal Replacing Project on atmospheric fine aerosol nitrate loading and formation pathways in urban Tianjin: Insights from chemical composition and 15N and 18O isotope ratios [J]. Science of the Total Environment, 2020, 708: 134797. doi: 10.1016/j.scitotenv.2019.134797
[28] WANG S B, YIN S S, ZHANG R Q, et al. Insight into the formation of secondary inorganic aerosol based on high-time-resolution data during haze episodes and snowfall periods in Zhengzhou, China [J]. Science of the Total Environment, 2019, 660: 47-56. doi: 10.1016/j.scitotenv.2018.12.465
[29] SU T N, LI Z Q, ZHENG Y T, et al. Abnormally shallow boundary layer associated with severe air pollution during the COVID-19 lockdown in China [J]. Geophysical Research Letters, 2020, 47(20): e2020GL090041.
[30] 焦方成, 武雯. 浅谈MeteoInfo: 气象数据显示的新平台 [J]. 电脑知识与技术, 2014, 10(27): 6513-6514. JIAO F C, WU W. The new platform of MeteoInfo—meteorological data display [J]. Computer Knowledge and Technology, 2014, 10(27): 6513-6514(in Chinese).
[31] HSU Y K, HOLSEN T M, HOPKE P K. Comparison of hybrid receptor models to locate PCB sources in Chicago [J]. Atmospheric Environment, 2003, 37(4): 545-562. doi: 10.1016/S1352-2310(02)00886-5
[32] 王爱平, 朱彬, 银燕, 等. 黄山顶夏季气溶胶数浓度特征及其输送潜在源区 [J]. 中国环境科学, 2014, 34(4): 852-861. WANG A P, ZHU B, YIN Y, et al. Aerosol number concentration properties and potential sources areas transporting to the top of mountain Huangshan in summer [J]. China Environmental Science, 2014, 34(4): 852-861(in Chinese).
[33] POLISSAR A V, HOPKE P K, POIROT R L. Atmospheric aerosol over Vermont: Chemical composition and sources [J]. Environmental Science & Technology, 2001, 35(23): 4604-4621.
[34] 樊丝慧. 北京地区污染天气大气边界层变化特征研究[D]. 南京: 南京信息工程大学, 2021. FAN S H. Characteristics of atmospheric boundary layer under polluted conditions over Beijing[D]. Nanjing: Nanjing University of Information Science & Technology, 2021(in Chinese).
[35] CHANG Y H, HUANG R J, GE X L, et al. Puzzling haze events in China during the coronavirus (COVID-19) shutdown [J]. Geophysical Research Letters, 2020, 47(12): e2020GL088533.
[36] 伍潘. 成都市PM2.5水溶性无机离子及气态前体物污染特征分析[D]. 成都: 西南交通大学, 2019. WU P. Characterization of water soluble inorganic ions in PM2.5 and gaseous precursors[D]. Chengdu: Southwest Jiaotong University, 2019(in Chinese).
[37] 徐虹, 张晓勇, 毕晓辉, 等. 中国PM2.5中水溶性硫酸盐和硝酸盐的时空变化特征 [J]. 南开大学学报(自然科学版), 2013, 46(6): 32-40. XU H, ZHANG X Y, BI X H, et al. Spatial and seasonal distribution characteristics of sulfate and nitrate in PM2.5 of China [J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2013, 46(6): 32-40(in Chinese).
[38] 王自发, 徐洪磊, 贺克斌, 等. 京津冀及周边地区再现重污染 五位专家解答污染成因 [EB/OL]. [2020-02-11]. 北京: 人民网-人民日报, WANG Z F, XU H L, HE K B, et al. Heavy pollution reappears in Beijing-Tianjin-Hebei and surrounding areas: five experts answer the causes of pollution [EB/OL]. [2020-02-11]. Beijing: Peoples Network - People Daily,
[39] XIAO H, XIAO H Y, ZHANG Z Y, et al. Chemical characteristics of major inorganic ions in PM2.5 based on year-long observations in Guiyang, southwest China—implications for formation pathways and the influences of regional transport [J]. Atmosphere, 2020, 11(8): 847. doi: 10.3390/atmos11080847
[40] TAO Y, YE X N, MA Z, et al. Insights into different nitrate formation mechanisms from seasonal variations of secondary inorganic aerosols in Shanghai [J]. Atmospheric Environment, 2016, 145: 1-9. doi: 10.1016/j.atmosenv.2016.09.012
[41] HUANG X, QIU R, CHAN C K, et al. Evidence of high PM2.5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: Transition in pathways of ambient ammonia to form aerosol ammonium at[NH4+]/[SO42−]= 1.5 [J]. Atmospheric Research, 2011, 99(3/4): 488-495.
[42] WANG H B, TIAN M, CHEN Y, et al. Seasonal characteristics, formation mechanisms and source origins of PM2.5 in two megacities in Sichuan Basin, China [J]. Atmospheric Chemistry and Physics, 2018, 18(2): 865-881. doi: 10.5194/acp-18-865-2018
[43] CHENG Y F, ZHENG G J, WEI C, et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China [J]. Science Advances, 2016, 2(12): e1601530. doi: 10.1126/sciadv.1601530
[44] HUANG R J, ZHANG Y L, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China [J]. Nature, 2014, 514(7521): 218-222. doi: 10.1038/nature13774
[45] 姬艺珍, 郭伟, 胡正华, 等. 太原市PM2.5积累特征及重污染天气成因分析 [J]. 环境科学学报, 2021, 41(3): 853-862. JI Y Z, GUO W, HU Z H, et al. Accumulation characteristics of PM2.5 and the causes of serious pollution weather in Taiyuan City, China [J]. Acta Scientiae Circumstantiae, 2021, 41(3): 853-862(in Chinese).
[46] ZAMORA M L, PENG J F, HU M, et al. Wintertime aerosol properties in Beijing [J]. Atmospheric Chemistry and Physics, 2019, 19(22): 14329-14338. doi: 10.5194/acp-19-14329-2019
[47] ZHANG Y L, CAO F. Fine particulate matter (PM2.5) in China at a city level [J]. Scientific Reports, 2015, 5: 14884. doi: 10.1038/srep14884
[48] LI S W, CHANG M H, LI H M, et al. Chemical compositions and source apportionment of PM2.5 during clear and hazy days: Seasonal changes and impacts of Youth Olympic Games [J]. Chemosphere, 2020, 256: 127163. doi: 10.1016/j.chemosphere.2020.127163
[49] LIN Y C, ZHANG Y L, FAN M Y, et al. Heterogeneous formation of particulate nitrate under ammonium-rich regimes during the high-PM2.5 events in Nanjing, China [J]. Atmospheric Chemistry and Physics, 2020, 20(6): 3999-4011. doi: 10.5194/acp-20-3999-2020
[50] YANG X W, CHENG S Y, LI J B, et al. Characterization of chemical composition in PM2.5 in Beijing before, during, and after a large-scale international event [J]. Aerosol and Air Quality Research, 2017, 17(4): 896-907. doi: 10.4209/aaqr.2016.07.0321
[51] 陶月乐, 李亲凯, 张俊, 等. 成都市大气颗粒物粒径分布及水溶性离子组成的季节变化特征 [J]. 环境科学, 2017, 38(10): 4034-4043. doi: 10.13227/j.hjkx.201702175 TAO Y L, LI Q K, ZHANG J, et al. Seasonal variations in particle size distribution and water-soluble ion composition of atmospheric particles in Chengdu [J]. Environmental Science, 2017, 38(10): 4034-4043(in Chinese). doi: 10.13227/j.hjkx.201702175
[52] 武高峰, 王丽丽, 董洁, 等. 国庆前后北京城区PM2.5组分污染及来源特征分析 [J]. 环境化学, 2021, 40(12): 3721-3732. doi: 10.7524/j.issn.0254-6108.2020072702 WU G F, WANG L L, DONG J, et al. Pollution and source characteristics of PM2.5 components in Beijing urban area around National Day [J]. Environmental Chemistry, 2021, 40(12): 3721-3732(in Chinese). doi: 10.7524/j.issn.0254-6108.2020072702
[53] PAN Y Y, LUO L, XIAO H W, et al. A one-year comprehensive characteristics of water soluble inorganic ions in PM2.5 from a typical mountainous city [J]. Atmospheric Pollution Research, 2020, 11(11): 1883-1890. doi: 10.1016/j.apr.2020.08.006
[54] HUANG L, SUN J J, JIN L, et al. Strategies to reduce PM2.5 and O3 together during late summer and early fall in San Joaquin Valley, California [J]. Atmospheric Research, 2021, 258: 105633. doi: 10.1016/j.atmosres.2021.105633
[55] GAO J, WEI Y T, SHI G L, et al. Roles of RH, aerosol pH and sources in concentrations of secondary inorganic aerosols, during different pollution periods [J]. Atmospheric Environment, 2020, 241: 117770. doi: 10.1016/j.atmosenv.2020.117770