[1] WANG P, PAN B, LI H, et al. The overlooked occurrence of environmentally persistent free radicals in an area with low-rank coal burning, Xuanwei, China [J]. Environmental Science & Technology, 2018, 52(3): 1054-1061.
[2] PRÜSS-USTÜN A, BONJOUR S, CORVALÁN C. The impact of the environment on health by country: A meta-synthesis [J]. Environmental Health:a Global Access Science Source, 2008, 7: 7.
[3] INGRAM D J E, TAPLEY J G, JACKSON R, et al. Paramagnetic resonance in carbonaceous solids [J]. Nature, 1954, 174(4434): 797-798. doi: 10.1038/174797a0
[4] FELD-COOK E E, BOVENKAMP-LANGLOIS L, LOMNICKI S M. Effect of particulate matter mineral composition on environmentally persistent free radical (EPFR) formation [J]. Environmental Science & Technology, 2017, 51(18): 10396-10402.
[5] CHEN Q C, SUN H Y, MU Z, et al. Characteristics of environmentally persistent free radicals in PM2.5: Concentrations, species and sources in Xi'an, Northwestern China [J]. Environmental Pollution, 2019, 247: 18-26. doi: 10.1016/j.envpol.2019.01.015
[6] GEHLING W, DELLINGER B. Environmentally persistent free radicals and their lifetimes in PM2.5 [J]. Environmental Science & Technology, 2013, 47(15): 8172-8178.
[7] PARK J, PARK E H, SCHAUER J J, et al. Reactive oxygen species (ROS) activity of ambient fine particles (PM2.5) measured in Seoul, Korea [J]. Environment International, 2018, 117: 276-283. doi: 10.1016/j.envint.2018.05.018
[8] YANG L L, LIU G R, ZHENG M H, et al. Highly elevated levels and particle-size distributions of environmentally persistent free radicals in haze-associated atmosphere [J]. Environmental Science & Technology, 2017, 51(14): 7936-7944.
[9] LYONS M J, SPENCE J B. Environmental free radicals [J]. British Journal of Cancer, 1960, 14(4): 703-708. doi: 10.1038/bjc.1960.79
[10] ARANGIO A M, TONG H J, SOCORRO J, et al. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles [J]. Atmospheric Chemistry and Physics, 2016, 16(20): 13105-13119. doi: 10.5194/acp-16-13105-2016
[11] CHEN Q C, WANG M M, WANG Y Q, et al. Rapid determination of environmentally persistent free radicals (EPFRs) in atmospheric particles with a quartz sheet-based approach using electron paramagnetic resonance (EPR) spectroscopy [J]. Atmospheric Environment, 2018, 184: 140-145. doi: 10.1016/j.atmosenv.2018.04.046
[12] 曹迪. 含环境持久性自由基生物炭的制备及其对斜生栅藻的毒性研究[D]. 大连: 大连理工大学, 2017. CAO D. Study on the preparation of environmental persistent free radicals (EPFRs) containing biochar and its toxicity on Scenedesmus obliquus[D]. Dalian: Dalian University of Technology, 2017(in Chinese).
[13] TRUONG H, LOMNICKI S, DELLINGER B. Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter [J]. Environmental Science & Technology, 2010, 44(6): 1933-1939.
[14] 何文静. 煤和生物质热解及煤溶剂抽提过程中自由基反应行为研究[D]. 北京: 北京化工大学, 2015. HE W J. Behaviors of radicals in the processes of pvrolvsis of coals and biomass and solvent extraction of coals[D]. Beijing: Beijing University of Chemical Technology, 2015(in Chinese).
[15] DELA CRUZ A L, GEHLING W, LOMNICKI S, et al. Detection of environmentally persistent free radicals at a superfund wood treating site [J]. Environmental Science & Technology, 2011, 45(15): 6356-6365.
[16] 袁静. 农作物秸秆燃烧排放PM2.5中有机物的研究[D]. 南京: 南京信息工程大学, 2011. YUAN J. The research of particulate organic matters emitted from cereal straws combustion[D]. Nanjing: Nanjing University of Information Science & Technology, 2011(in Chinese).
[17] TIAN L W, KOSHLAND C P, YANO J, et al. Carbon-centered free radicals in particulate matter emissions from wood and coal combustion [J]. Energy & Fuels:an American Chemical Society Journal, 2009, 23(5): 2523-2526.
[18] QIAN R Z, ZHANG S M, PENG C, et al. Characteristics and potential exposure risks of environmentally persistent free radicals in PM2.5 in the Three Gorges Reservoir area, Southwestern China [J]. Chemosphere, 2020, 252: 126425. doi: 10.1016/j.chemosphere.2020.126425
[19] 胡炳涛. 陕西关中麦草秸秆热解特性及其动力学研究[D]. 西安: 陕西科技大学, 2016. HU B T. Study on the pyrolytic characteristics and kinetics of wheat straw from Guanzhong plain of Shaanxi[D]. Xi'an: Shaanxi University of Science & Technology, 2016(in Chinese).
[20] LIEKE T, ZHANG X C, STEINBERG C E W, et al. Overlooked risks of biochars: Persistent free radicals trigger neurotoxicity in Caenorhabditis elegans [J]. Environmental Science & Technology, 2018, 52(14): 7981-7987.
[21] 贺开来, 李娅绮, 徐红梅, 等. 家用燃料燃烧排放PM2.5的特征及其对肺功能的影响: 以陕西蓝田县为例 [J]. 环境化学, 2020, 39(2): 552-565. doi: 10.7524/j.issn.0254-6108.2019032301 HE K L, LI Y Q, XU H M, et al. Characteristics of PM2.5 emitted from domestic fuel combustion and its effect on lung function: A case study in Lantian County, Shaanxi, China [J]. Environmental Chemistry, 2020, 39(2): 552-565(in Chinese). doi: 10.7524/j.issn.0254-6108.2019032301
[22] WITWICKI M, JERZYKIEWICZ M, OZAROWSKI A. Understanding natural semiquinone radicals - Multifrequency EPR and relativistic DFT studies of the structure of Hg(II) complexes [J]. Chemosphere, 2015, 119: 479-484. doi: 10.1016/j.chemosphere.2014.07.047
[23] DELA CRUZ A L, COOK R L, LOMNICKI S M, et al. Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals [J]. Environmental Science & Technology, 2012, 46(11): 5971-5978.
[24] 钱若芷. 三峡库区典型城区PM2.5化学组成及持久性自由基的健康影响研究[D]. 重庆: 重庆三峡学院, 2020. QIAN R Z. Study on the chemical composition of PM2.5 and the health effects of persistent free radicals in typical urban areas of the Three Gorges Reservoir Area[D]. Chongqing: Chongqing Three Gorges University, 2020(in Chinese).
[25] KHACHATRYAN L, VEJERANO E, LOMNICKI S, et al. Environmentally persistent free radicals (EPFRs). 1. generation of reactive oxygen species in aqueous solutions [J]. Environmental Science & Technology, 2011, 45(19): 8559-8566.
[26] CHEN Q C, WANG M M, SUN H Y, et al. Enhanced health risks from exposure to environmentally persistent free radicals and the oxidative stress of PM2.5 from Asian dust storms in Erenhot, Zhangbei and Jinan, China [J]. Environment International, 2018, 121: 260-268. doi: 10.1016/j.envint.2018.09.012
[27] 刘程成. 环境健康风险评估中土壤摄入、呼吸和皮肤暴露参数研究[D]. 常州: 常州大学, 2021. LIU C C. Soil intake, respiration, and skin exposure parameters in environmental health risk assessment[D]. Changzhou: Changzhou University, 2021(in Chinese).
[28] PRYOR W A. Oxy-radicals and related species: Their formation, lifetimes, and reactions [J]. Annual Review of Physiology, 1986, 48(1): 657-667. doi: 10.1146/annurev.ph.48.030186.003301
[29] VEJERANO E P, RAO G Y, KHACHATRYAN L, et al. Environmentally persistent free radicals: Insights on a new class of pollutants [J]. Environmental Science & Technology, 2018, 52(5): 2468-2481.
[30] GEHLING W, KHACHATRYAN L, DELLINGER B. Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5 [J]. Environmental Science & Technology, 2014, 48(8): 4266-4272.
[31] BAUM S L, ANDERSON I G M, BAKER R R, et al. Electron spin resonance and spin trap investigation of free radicals in cigarette smoke: Development of a quantification procedure [J]. Analytica Chimica Acta, 2003, 481(1): 1-13. doi: 10.1016/S0003-2670(03)00078-3
[32] US EPA. Recommendations for and documentation of biological values for use in risk assessment[R]. EPA/600/6-87/008, 1988.
[33] 阮光辉. 香烟和燃香燃烧排放系颗粒物中离子和碳组分特征研究[D]. 上海: 华东理工大学, 2020. RUAN G H. Study on the characteristics of ionic and carbonaceous components in fine particles emitted from cigarettes and incense burning[D]. Shanghai: East China University of Science and Technology, 2020(in Chinese).
[34] BLAKLEY R L, HENRY D D, SMITH C J. Lack of correlation between cigarette mainstream smoke particulate phase radicals and hydroquinone yield [J]. Food and Chemical Toxicology, 2001, 39(4): 401-406. doi: 10.1016/S0278-6915(00)00144-7
[35] VALAVANIDIS A, HARALAMBOUS E. A comparative study by electron paramagnetic resonance of free radical species in the mainstream and sidestream smoke of cigarettes with conventional acetate filters and ‘bio-filters’ [J]. Redox Report, 2001, 6(3): 161-171. doi: 10.1179/135100001101536274
[36] SARAVIA J, LEE G I, LOMNICKI S, et al. Particulate matter containing environmentally persistent free radicals and adverse infant respiratory health effects: A review [J]. Journal of Biochemical and Molecular Toxicology, 2013, 27(1): 56-68. doi: 10.1002/jbt.21465
[37] 李豪, 陈庆彩, 孙浩堯. 西安市PM2.5中环境持久性自由基污染特征 [J]. 中国环境科学, 2020, 40(3): 967-974. doi: 10.3969/j.issn.1000-6923.2020.03.005 LI H, CHEN Q C, SUN H Y. Study on pollution characteristics of environmentally persistent free radicals of PM2.5 in Xi'an [J]. China Environmental Science, 2020, 40(3): 967-974(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.03.005
[38] 简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响 [J]. 环境科学学报, 2016, 36(5): 1757-1765. doi: 10.13671/j.hjkxxb.2015.0657 JIAN M F, GAO K F, YU H P. Effects of different pyrolysis temperatures on the preparation and characteristics of bio-char from rice straw [J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1757-1765(in Chinese). doi: 10.13671/j.hjkxxb.2015.0657
[39] QIN Y X, LI G Y, GAO Y P, et al. Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: A critical review [J]. Water Research, 2018, 137: 130-143. doi: 10.1016/j.watres.2018.03.012
[40] 花建丽, 宋才生, 王光辉, 等. ESR自旋稳定化技术在漆酶化学中的应用 [J]. 物理化学学报, 1999, 15(2): 173-177. doi: 10.3866/PKU.WHXB19990215 HUA J L, SONG C S, WANG G H, et al. The application of ESR-spin stable technique in laccase chemical system [J]. Acta Physico-Chimica Sinica, 1999, 15(2): 173-177(in Chinese). doi: 10.3866/PKU.WHXB19990215
[41] CHEN Q C, SUN H Y, WANG J, et al. Long-life type—The dominant fraction of EPFRs in combustion sources and ambient fine particles in Xi'an [J]. Atmospheric Environment, 2019, 219: 117059. doi: 10.1016/j.atmosenv.2019.117059
[42] CHEN Q C, SUN H Y, WANG M M, et al. Dominant fraction of EPFRs from nonsolvent-extractable organic matter in fine particulates over Xi’an, China [J]. Environmental Science & Technology, 2018, 52(17): 9646-9655.