[1] LU J L, TANG H J, SUN Y P. Measures and suggestions on restraining China's excessive growth of natural gas external dependence[J]. Natural Gas Industry, 2019, 39(8): 1-9.
[2] LOU D M, PENG Y, HU Z Y, et al. Characteristics of modal particulate emission on diesel car by coal-to-liquid blends[J]. Proceedings of 2013 International Conference on Materials for Renewable Energy and Environment. Institute of Electrical and Electronics Engineers, 2013: 298-301.
[3] Mayya V. Kulikova. The new Fischer-Tropsch process over ultrafine catalysts[J]. Catalysis Today, 2020, 348: 89-94. doi: 10.1016/j.cattod.2019.09.036
[4] 李贞, 王俊章, 竹涛, 等. 煤制油工艺及煤制油残渣综合利用综述[J]. 环境工程, 2021, 39(5): 135-141+149.
[5] ZHANG Y, YAO Y, CHANG J, et al. Fischer-Tropsch synthesis with ethene co-feeding: Experimental evidence of the co-insertion mechanism at low temperature[J]. AIChE Journal, 2020, 66(11): e17029.
[6] ZHANG R, KANG L, LIU H, et al. Crystalfacet dependence of carbon chain growth mechanism over the Hcp and Fcc Co catalysts in the Fischer-Tropsch synthesis[J]. Applied Catalysis B:Environmental, 2020, 269: 118847. doi: 10.1016/j.apcatb.2020.118847
[7] 马军. 神华宁煤煤制油蜡过滤装置工艺及操作优化[J]. 云南化工, 2019, 46(12): 171-172.
[8] 王世伟, 焦甜甜, 张亚青, 等. 费托合成渣蜡资源化利用研究进展[J]. 洁净煤技术, 2021, 27(04): 26-33. doi: 10.13226/j.issn.1006-6772.CE21031801
[9] 李金惠, 张上, 孙乾予. 我国工业固体废物处理利用产业状况分析与展望[J]. 环境保护, 2021, 49(2): 14-18.
[10] LIU G R, ZHENG M H, LV P, et al. Levels and profiles of unintentionally produced persistent organic pollutants in surface soils from shanxi province, China, Bulletin of Environmental Contamination and Toxicology, 2011, 86(5): 535 - 538.
[11] 李金惠, 卓玥雯. “无废城市”理念助推可持续发展[J]. 环境保护, 2019, 47(9): 9-13.
[12] 张雅婕, 薛永兵, 刘振民. 煤直接液化残渣性能及应用研究进展[J]. 洁净煤技术, 2021, 27(5): 60-67. doi: 10.13226/j.issn.1006-6772.20030702
[13] RAGO Y P, COLLARD F X, GORGENS J F, et al. Co-combustion of torrefied biomass-plastic waste blends with coal through TGA: Influence of synergistic behaviour[J]. Energy, 2022, 239: 121859. doi: 10.1016/j.energy.2021.121859
[14] 潘升全, 谭厚章, 刘潇, 等. 大型电厂煤粉炉掺烧成型生物质试验[J]. 中国电力, 2010, 43(12): 51-55. doi: 10.3969/j.issn.1004-9649.2010.12.012
[15] 王荔, 钟日钢, 陈德珍, 等. 生活垃圾焚烧炉应急处置医疗废物对炉渣和烟气排放影响研究[J]. 环境卫生工程, 2021, 29(6): 1-7.
[16] LI H, LI Y, JIN Y. Gaseous emissions from the co-combustion of wet sludge and coal[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2015, 37(19): 2064-2072. doi: 10.1080/15567036.2012.666622
[17] ZHANG G, HAI J, CHENG J, et al. Evaluation of PCDD/Fs and metals emission from a circulating fluidized bed incinerator co-combusting sewage sludge with coal[J]. Journal of Environmental Sciences, 2013, 25(1): 231-235. doi: 10.1016/S1001-0742(12)60009-6
[18] FULLANA A, CONESA J A, FONT R, et al. Formation and destruction of chlorinated pollutants during sewage sludge incineration[J]. Environmental Science & Technology, 2004, 38(10): 2953-2958.
[19] ROY M M, DUTTA A, CORSCADDEN K, et al. Review of biosolids management options and co-incineration of a biosolid-derived fuel[J]. Waste Management, 2011, 1(11): 2228-2235.
[20] 张敏, 白强, 刘昱平. 循环流化床锅炉掺烧煤矸石试验研究[J]. 热力发电, 2007(4): 55-57. doi: 10.3969/j.issn.1002-3364.2007.04.014
[21] 黄中, 江建忠, 徐正泉, 等. 循环流化床锅炉大比例煤泥掺烧试验研究[J]. 中国电机工程学报, 2013, 33(S1): 112-116.
[22] 毛健雄, 郭慧娜, 吴玉新. 中国煤电低碳转型之路国外生物质发电政策/技术综述及启示[J/OL]. (2022-03-24) [2022-04-02].https://doi.org/10.13226/j.issn.1006-6772.CC22021701.
[23] 马仑, 汪涂维, 方庆艳, 等. 混煤燃烧过程中的交互作用: 掺混方式对混煤燃烧特性的影响[J]. 煤炭学报, 2016, 41(9): 2340-2346.
[24] 徐西征, 闫大海, 刘美佳. 煤粉锅炉协同资源化处理煤制天然气行业固体废物的环境风险控制研究[J]. 煤化工, 2021, 49(4): 1-6.
[25] 董子平, 闫大海, 何洁, 等. 煤直接液化残渣掺烧的燃烧特性及其苯系物的排放特征[J]. 环境科学研究, 2015, 28(8): 1253-1259.
[26] 孙献斌. 700 ℃超超临界循环流化床锅炉方案设计研究[J]. 中国电机工程学报, 2014, 34(23): 3977-3982.
[27] 张世鑫, 蔡芳龙, 陈玉洪, 等. 大型CFB锅炉掺烧生物质及城市固废可行性分析[J]. 中国资源综合利用, 2017, 35(07): 64-68. doi: 10.3969/j.issn.1008-9500.2017.07.027
[28] 辽宁省环境保护科学研究所. 工业固体废物采样制样技术规范: HJ/T 20-1998[S]. 行业标准-环保, 1998
[29] 中国环境科学研究院固体废物污染控制技术研究所. 危险废物鉴别技术规范: HJ 298-2019[S]. 行业标准-环保, 2007.
[30] 肖翠微. 中等挥发分烟煤燃烧特性研究[J]. 煤炭科学技术, 2015, 43(5): 135-138. doi: 10.13199/j.cnki.cst.2015.05.033
[31] 中国环境科学研究院固体废物污染控制技术研究所, 环境标准研究所. 危险废物鉴别标准 毒性物质含量鉴别: GB/T 5085.6-2007[S]. 国家质检总局, 2007:
[32] 中国环境科学研究院, 同济大学, 清华大学, 等. 生活垃圾填埋场污染控制标准: GB 16889-2008[S]. 国家质检总局, 2008.
[33] ZHAO Y Y, LIU G R, ZHENG M H, et al. Field study and theoretical evidence for the profiles and underlying mechanisms of PCDD/F formation in cement kilns co-incinerating municipal solid waste and sewage sludge[J]. Waste Management, 2017, 61: 337-344. doi: 10.1016/j.wasman.2016.12.008
[34] MININNI G, SBRILLI A, GUERRIERO E, et al. Dioxins and furans formation in pilot incineration tests of sewage sludge spiked with organic chlorine[J]. Chemosphere, 2004, 54(9): 1337-1350. doi: 10.1016/S0045-6535(03)00252-2
[35] 张梦玫, 李晓东, 陈彤. 氯化铜催化二噁英生成实验及指纹特性分析[J]. 环境科学学报, 2019, 39(8): 2735-2746. doi: 10.13671/j.hjkxxb.2019.0062
[36] CHANG Y M, FAN W P, DAI W C, et al. Characteristics of PCDD/F content in fly ash discharged from municipal solid waste incinerators[J]. Journal of Hazadous Materials, 2011, 192(2): 521-529. doi: 10.1016/j.jhazmat.2011.05.055
[37] 吕家扬, 林颖, 蔡凤珊, 等. 市政污泥与生活垃圾协同焚烧的二噁英排放特征及毒性当量平衡[J]. 华南师范大学学报(自然科学版), 2020, 52(5): 31-40.
[38] 葛金林, 肖海平, 闫大海. 生物质与生活垃圾共气化过程重金属的迁移转化规律[J]. 发电技术, 2020, 41(05): 552-560. doi: 10.12096/j.2096-4528.pgt.20060
[39] 张海英, 赵由才, 祁景玉. 生活垃圾焚烧飞灰重金属的受热特性[J]. 环境污染与防治, 2007(1): 9-13. doi: 10.3969/j.issn.1001-3865.2007.01.003
[40] 闫大海, 李璐, 黄启飞, 等. 水泥窑共处置危险废物过程中重金属的分配[J]. 中国环境科学, 2009, 29(9): 977-984. doi: 10.3321/j.issn:1000-6923.2009.09.016