[1] |
OBILEKE K, ONYEAKA H, MEYER E L, et al. Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review[J]. Electrochemistry Communications, 2021, 125: 107003. doi: 10.1016/j.elecom.2021.107003
|
[2] |
付宁, 黄丽萍, 葛林科, 等. 微生物燃料电池在污水处理中的研究进展[J]. 环境工程学报, 2006, 7(12): 12-14. doi: 10.3969/j.issn.1673-9108.2006.12.003
|
[3] |
LU M, QIAN Y J, HUANG L, et al. Improving the performance of microbial fuel cells through anode manipulation[J]. ChemPlusChem, 2015, 80(8): 1216-1225. doi: 10.1002/cplu.201500200
|
[4] |
侯俊先. 微生物燃料电池阳极改性及生物膜内部传递现象的研究[D]. 北京: 北京工业大学, 2018.
|
[5] |
董堃, 郭涛, 汪长征, 等. 微生物燃料电池阳极材料研究现状与展望[J]. 材料导报, 2017, 31(S1): 205-209.
|
[6] |
GUO K, SOERIYADI A H, FENG H, et al. Heat-treated stainless steel felt as scalable anode material for bioelectrochemical systems[J]. Bioresource Technology, 2015, 195: 46-50. doi: 10.1016/j.biortech.2015.06.060
|
[7] |
HOU J X, LIU Z L, LI Y X. Polyaniline modified stainless steel fiber felt for high-performance microbial fuel cell anodes[J]. Journal of Clean Energy Technologies, 2015, 3(3): 165-169. doi: 10.7763/JOCET.2015.V3.189
|
[8] |
HOU J X, LIU Z L, YANG S Q, et al. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells[J]. Journal of Power Sources, 2014, 258: 204-209. doi: 10.1016/j.jpowsour.2014.02.035
|
[9] |
HOU J X, LIU Z L, LI Y X, et al. A comparative study of graphene-coated stainless steel fiber felt and carbon cloth as anodes in MFCs[J]. Bioprocess and Biosystems Engineering, 2015, 38(5): 881-888. doi: 10.1007/s00449-014-1332-0
|
[10] |
AISWARIA P, NAINA MOHAMED S, SINGARAVELU D L, et al. A review on graphene/graphene oxide supported electrodes for microbial fuel cell applications: Challenges and prospects[J]. Chemosphere, 2022, 296: 133983. doi: 10.1016/j.chemosphere.2022.133983
|
[11] |
LABUNOV V A, TABULINA L V, KOMISSAROV I V, et al. Features of the reduction of graphene from graphene oxide[J]. Russian Journal of Physical Chemistry A, 2017, 91(6): 1088-1092. doi: 10.1134/S0036024417060140
|
[12] |
原诗瑶. 基于泡沫镍电极的微生物燃料电池电化学性能的研究[D]. 太原: 中北大学, 2018.
|
[13] |
JIA X Q, HE Z H, ZHANG X, et al. Carbon paper electrode modified with TiO2 nanowires enhancement bioelectricity generation in microbial fuel cell[J]. Synthetic Metals, 2016, 215: 170-175. doi: 10.1016/j.synthmet.2016.02.015
|
[14] |
LI Y F, ZHOU Y, XU C. Porous TiO2/rGO nanocomposites prepared by cold sintering as efficient electrocatalyst for nitrogen reduction reaction under ambient conditions[J]. Journal of the European Ceramic Society, 2022, 42(4): 1548-1555. doi: 10.1016/j.jeurceramsoc.2021.11.063
|
[15] |
王义安, 张学洪, 郑君健, 等. 不同基质碳源下人工湿地微生物燃料电池的电化学性能及微生物群落结构[J]. 环境工程学报, 2021, 15(11): 3696-3706. doi: 10.12030/j.cjee.202108060
|
[16] |
LIU S T, SONG H L, WEI S, et al. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland-microbial fuel cell systems[J]. Bioresource Technology, 2014, 166: 575-583. doi: 10.1016/j.biortech.2014.05.104
|
[17] |
朱进华, 薛丽仙, 杨娜, 等. MnO2-r-GO阳极对微生物燃料电池产电性能的影响[J]. 环境工程学报, 2016, 10(8): 4559-4562. doi: 10.12030/j.cjee.201503189
|
[18] |
SANDFORD C, EDWARDS M A, KLUNDER K J, et al. A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms[J]. Chemical Science, 2019, 10(26): 6404-6422. doi: 10.1039/C9SC01545K
|
[19] |
LI H, WANG X T, ZHANG L, et al. Preparation and photocathodic protection performance of CdSe/reduced graphene oxide/TiO2 composite[J]. Corrosion Science, 2015, 94: 342-349. doi: 10.1016/j.corsci.2015.02.017
|
[20] |
QIU Z Z, WEI L L, WANG G, et al. Stainless steel felt as diffusion backing for high-performance microbial fuel cell cathodes[J]. RSC advances, 2015, 5(57): 4621-46217.
|
[21] |
XIN S S, SHEN J G, LIU G C, et al. Electricity generation and microbial community of single-chamber microbial fuel cells in response to Cu2O nanoparticles/reduced graphene oxide as cathode catalyst[J]. Chemical Engineering Journal, 2020, 380: 122446. doi: 10.1016/j.cej.2019.122446
|
[22] |
LUO L J, MENG D M, HE L J, et al. Photocatalytic activation of peroxydisulfate by a new porous g-C3N4/reduced graphene oxide/TiO2 nanobelts composite for efficient degradation of 17α-ethinylestradiol[J]. Chemical Engineering Journal, 2022, 446: 137325. doi: 10.1016/j.cej.2022.137325
|
[23] |
NGUYEN P T N, SALIM C, KURNIAWAN W, et al. A non-hydrolytic sol-gel synthesis of reduced graphene oxide/TiO2 microsphere photocatalysts[J]. Catalysis Today, 2014, 230: 166-173. doi: 10.1016/j.cattod.2013.10.017
|
[24] |
NAWAZ M, MOZTAHIDA M, KIM J, et al. Photodegradation of microcystin-LR using graphene-TiO2/sodium alginate aerogels[J]. Carbohydrate Polymers, 2018, 199: 109-118. doi: 10.1016/j.carbpol.2018.07.007
|
[25] |
CHUA C K, AMBROSI A, PUMERA M. Graphene oxide reduction by standard industrial reducing agent: Thiourea dioxide[J]. Journal of Materials Chemistry, 2012, 22(22): 11054. doi: 10.1039/c2jm16054d
|
[26] |
AL-GAASHANI R, NAJJAR A, ZAKARIA Y, et al. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods[J]. Ceramics International, 2019, 45(11): 14439-14448. doi: 10.1016/j.ceramint.2019.04.165
|
[27] |
NG H K M, LEO C P. The coherence between TiO2 nanoparticles and microfibrillated cellulose in thin film for enhanced dispersal and photodegradation of dye[J]. Progress in Organic Coatings, 2019, 132: 70-75. doi: 10.1016/j.porgcoat.2019.02.017
|
[28] |
TIAN B, WANG Y, HAO M, et al. Achieving of high utilization of reduced graphene oxide-TiO2 nanoparticle composites via oxygen bonds for enhanced optical limiting performance[J]. Journal of Luminescence, 2022, 244: 118696. doi: 10.1016/j.jlumin.2021.118696
|
[29] |
WU D, OUYANG Y, ZHANG W, et al. Hollow cobalt oxide nanoparticles embedded porous reduced graphene oxide anode for high performance lithium ion batteries[J]. Applied Surface Science, 2020, 508: 145311. doi: 10.1016/j.apsusc.2020.145311
|
[30] |
ZOU L, QIAO Y, WU X, et al. Synergistic effect of titanium dioxide nanocrystal/reduced graphene oxide hybrid on enhancement of microbial electrocatalysis[J]. Journal of Power Sources, 2015, 276: 208-214. doi: 10.1016/j.jpowsour.2014.11.127
|
[31] |
CAO S, CHEN C, ZHANG J, et al. MnOx quantum dots decorated reduced graphene oxide/TiO2 nanohybrids for enhanced activity by a UV pre-catalytic microwave method[J]. Applied Catalysis B:Environmental, 2015, 176-177: 500-512. doi: 10.1016/j.apcatb.2015.04.041
|
[32] |
刘明, 田颖, 傅杰, 等. 改性316L不锈钢表面聚苯胺的制备及电化学性能[J]. 高等学校化学学报, 2016, 37(12): 2228-2235. doi: 10.7503/cjcu20160432
|
[33] |
RELLA S, GIURI A, CORCIONE C E, et al. X-ray photoelectron spectroscopy of reduced graphene oxide prepared by a novel green method[J]. Vacuum, 2015, 119: 159-162. doi: 10.1016/j.vacuum.2015.05.008
|
[34] |
WANG F, ZHANG K. Reduced graphene oxide-TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B[J]. Journal of Molecular Catalysis A:Chemical, 2011, 345(1/2): 101-107.
|
[35] |
SHAN Y J, CUI J L, LIU Y, et al. TiO2 anchored on MoS2 nanosheets based on molybdenite exfoliation as an efficient cathode for enhanced Cr (VI) reduction in microbial fuel cell[J]. Environmental Research, 2020, 190: 110010. doi: 10.1016/j.envres.2020.110010
|
[36] |
PANCHANGAM S C, YELLATUR C S, YANG J, et al. Facile fabrication of TiO2-graphene nanocomposites (TGNCs) for the efficient photocatalytic oxidation of perfluorooctanoic acid (PFOA)[J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 6359-6369. doi: 10.1016/j.jece.2018.10.003
|
[37] |
杨晓双, 王凯, 冯春华, 等. 石墨烯氧化物气凝胶修饰金属阳极促进微生物燃料电池的产电性能[J]. 环境工程学报, 2017, 11(4): 2598-2606. doi: 10.12030/j.cjee.201510146
|
[38] |
CHEN J Y, XIE P, ZHANG Z P. Reduced graphene oxide/polyacrylamide composite hydrogel scaffold as biocompatible anode for microbial fuel cell[J]. Chemical Engineering Journal, 2019, 361: 615-624. doi: 10.1016/j.cej.2018.12.116
|
[39] |
ZHANG C Y, LIANG P, YANG X F, et al. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell[J]. Biosensors and Bioelectronics, 2016, 81: 32-38. doi: 10.1016/j.bios.2016.02.051
|
[40] |
RAYCHAUDHURI A, BEHERA M. Ceramic membrane modified with rice husk ash for application in microbial fuel cells[J]. Electrochimica Acta, 2020, 363: 137261. doi: 10.1016/j.electacta.2020.137261
|
[41] |
GUO W, CUI Y R, SONG H, et al. Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal[J]. Bioprocess and Biosystems Engineering, 2014, 37(9): 1749-1758. doi: 10.1007/s00449-014-1148-y
|
[42] |
LIU J, QIAO Y, GUO C X, et al. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells[J]. Bioresource Technology, 2012, 114: 275-280. doi: 10.1016/j.biortech.2012.02.116
|
[43] |
CHEN J, DENG F, HU Y Y, et al. Antibacterial activity of graphene-modified anode on Shewanella oneidensis MR-1 biofilm in microbial fuel cell[J]. Journal of Power Sources, 2015, 290: 80-86. doi: 10.1016/j.jpowsour.2015.03.033
|
[44] |
PAUL D, NOORI M T, RAJESH P P, et al. Modification of carbon felt anode with graphene oxide-zeolite composite for enhancing the performance of microbial fuel cell[J]. Sustainable Energy Technologies and Assessments, 2018, 26: 77-82. doi: 10.1016/j.seta.2017.10.001
|
[45] |
LI J N, YU Y L, CHEN D H, et al. Hydrophilic graphene aerogel anodes enhance the performance of microbial electrochemical systems[J]. Bioresource Technology, 2020, 304: 122907. doi: 10.1016/j.biortech.2020.122907
|