[1] |
YUAN H P, YAN X F, YANG C F, et al. Enhancement of waste activated sludge dewaterability by electro-chemical pretreatment[J]. Journal of Hazardous Materials, 2011, 187(1): 82-88.
|
[2] |
甄广印, 吴太朴, 陆雪琴, 等. 高级氧化污泥深度脱水技术研究进展[J]. 环境污染与防治, 2019, 41(9): 1108-1113+1119. doi: 10.15985/j.cnki.1001-3865.2019.09.020
|
[3] |
LIANG J, GU H, ZHANG S, et al. Novel insight into sludge dewaterability mechanism using polymeric aluminium ferric chloride and anaerobic mesophilic digestion treatment under ultrahigh pressure condition[J]. Separation and Purification Technology, 2020, 234: 116137.
|
[4] |
徐慧敏, 何国富, 熊南安, 等. 双频超声波促进剩余污泥的破解[J]. 环境工程学报, 2017, 11(4): 2452-2456. doi: 10.12030/j.cjee.201510194
|
[5] |
WU B, DAI X, CHAI X. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations[J]. Water Research, 2020, 180: 115912.
|
[6] |
LV H, LIU D, ZHANG Y, et al. Effects of temperature variation on wastewater sludge electro-dewatering[J]. Journal of Cleaner Production, 2019, 214: 873-880.
|
[7] |
DONG Y, YUAN H, GE D, et al. A novel conditioning approach for amelioration of sludge dewaterability using activated carbon strengthening electrochemical oxidation and realized mechanism[J]. Water Research, 2022, 220: 118704.
|
[8] |
XIAO J, YUAN H, HUANG X, et al. Improvement of the sludge dewaterability conditioned by biological treatment coupling with electrochemical pretreatment[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96: 453-462.
|
[9] |
施钦, 刘宇川, 谭学才, 等. 电絮凝法调理剩余污泥CST的影响因素分析[J]. 化工技术与开发, 2021, 50(11): 45-48. doi: 10.3969/j.issn.1671-9905.2021.11.013
|
[10] |
陆香玉, 俞海祥, 陈亚, 等. 化学絮凝与电絮凝调理污泥脱水性能影响作用的对比研究[J]. 环境科学学报, 2022, 42(03): 257-267. doi: 10.13671/j.hjkxxb.2021.0441
|
[11] |
OLVERA-VARGAS H, ZHENG X, GARCIA-RODRIGUEZ O, et al. Sequential “electrochemical peroxidation – Electro-Fenton” process for anaerobic sludge treatment[J]. Water Research, 2019, 154: 277-286.
|
[12] |
GHARIBI H, SOWLAT M H, MAHVI A H, et al. Performance evaluation of a bipolar electrolysis/electrocoagulation (EL/EC) reactor to enhance the sludge dewaterability[J]. Chemosphere, 2013, 90(4): 1487-1494.
|
[13] |
CAI M, WANG Q, WELLS G, et al. Improving dewaterability and filterability of waste activated sludge by electrochemical Fenton pretreatment[J]. Chemical Engineering Journal, 2019, 362: 525-536.
|
[14] |
FR/OLUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated-sludge floc matrix[J]. Applied Microbiology and Biotechnology, 1995, 43(4): 755-761.
|
[15] |
DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric Method for Determination of Sugars and Related Substances[J]. Analytical Chemistry, 1956, 28(3): 350-356.
|
[16] |
李洁. 电解强化剩余污泥脱水及机理研究[D]. 南京: 南京大学, 2018.
|
[17] |
CHEN Y, LU A, LI Y, et al. Naturally Occurring Sphalerite As a Novel Cost-Effective Photocatalyst for Bacterial Disinfection under Visible Light[J]. Environmental Science & Technology, 2011, 45(13): 5689-5695.
|
[18] |
YU H, GU L, ZHANG D, et al. Enhancement of sludge dewaterability by three-dimensional electrolysis with sludge-based particle electrodes[J]. Separation and Purification Technology, 2022, 287: 120599.
|
[19] |
董红钰. 铁盐混凝剂中铁形态对混凝—超滤联用工艺的影响[D]. 济南: 山东大学, 2015.
|
[20] |
HU S, ZHAO W, HU J, et al. Integration of electrochemical and calcium hypochlorite oxidation for simultaneous sludge deep dewatering, stabilization and phosphorus fixation[J]. Science of The Total Environment, 2021, 750: 141408.
|
[21] |
GE D, YUAN H, XIAO J, et al. Insight into the enhanced sludge dewaterability by tannic acid conditioning and pH regulation[J]. Science of The Total Environment, 2019, 679: 298-306.
|
[22] |
PENG H, ZHONG S, XIANG J, et al. Characterization and secondary sludge dewatering performance of a novel combined aluminum-ferrous-starch flocculant (CAFS)[J]. Chemical Engineering Science, 2017, 173: 335-345.
|
[23] |
谭鑫. 电化学沉淀磷酸铵镁-电氧化一体化对高氮磷废水脱氮除磷研究[D]. 2020.
|
[24] |
黄雪琪, 靖波, 陈文娟, 等. 电絮凝过程中倒极消除极板钝化[J]. 环境工程学报, 2019, 13(11): 2661-2667. doi: 10.12030/j.cjee.201901028
|
[25] |
王丽苹. Fe0/H2O2类芬顿法对污泥脱水性能的改善及机理分析[D]. 广州: 华南理工大学, 2018.
|
[26] |
戴常超, 陈大宏, 刘峻峰, 等. 强化电絮凝技术的基础、现状和未来展望[J]. 工业水处理, 2022, 42(01): 1-14. doi: 10.19965/j.cnki.iwt.2020-1164
|
[27] |
谢琦莹. 无机铁盐及铁基MOFs去除富营养化水体中磷的应用基础研究[D]. 昆明: 云南大学, 2018.
|
[28] |
MASIHI H, BADALIANS GHOLIKANDI G. Employing Electrochemical-Fenton process for conditioning and dewatering of anaerobically digested sludge: A novel approach[J]. Water Research, 2018, 144: 373-382.
|
[29] |
BADALIANS GHOLIKANDI G, ZAKIZADEH N, MASIHI H. Application of peroxymonosulfate-ozone advanced oxidation process for simultaneous waste-activated sludge stabilization and dewatering purposes: A comparative study[J]. Journal of Environmental Management, 2018, 206: 523-531.
|
[30] |
SARI ERKAN H, ONKAL ENGIN G. A comparative study of waste activated sludge disintegration by electrochemical pretreatment process combined with hydroxyl and sulfate radical based oxidants[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103918.
|
[31] |
ZENG Q, HAO T, YUAN Z, et al. Dewaterability enhancement and sulfide mitigation of CEPT sludge by electrochemical pretreatment[J]. Water Research, 2020, 176: 115727.
|
[32] |
王璠, 李建新, 崔帅, 等. 钛基金属氧化物电极的失活机制及改进方法的研究进展[J]. 山东化工, 2021, 50(12): 52-54+57.
|
[33] |
GUAN B, YU J, FU H, et al. Improvement of activated sludge dewaterability by mild thermal treatment in CaCl2 solution[J]. Water Research, 2012, 46(2): 425-432.
|
[34] |
MAHMOUD A, OLIVIER J, VAXELAIRE J, et al. Electrical field: A historical review of its application and contributions in wastewater sludge dewatering[J]. Water Research, 2010, 44(8): 2381-2407.
|
[35] |
赵学雷, 霍志保, 蔡俊. 污泥电化学脱水研究进展[J]. 化工设计通讯, 2020, 46(12): 185-188.
|
[36] |
秦雅鑫. Fe(Ⅲ)/H2O2类Fenton体系中Fe(Ⅲ)/Fe(Ⅱ)循环调控及其降解除草剂甲草胺性能的研究[D]. 武汉: 华中师范大学, 2016.
|
[37] |
CAO B, WANG R, ZHANG W, et al. Carbon-based materials reinforced waste activated sludge electro-dewatering for synchronous fuel treatment[J]. Water Research, 2019, 149: 533-542.
|
[38] |
RUIZ-HERNANDO M, MARTíN-DíAZ J, LABANDA J, et al. Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential[J]. Water Research, 2014, 61: 119-129.
|
[39] |
BAZRAFSHAN E, MOHAMMADI L, ANSARI-MOGHADDAM A, et al. Heavy metals removal from aqueous environments by electrocoagulation process– a systematic review[J]. Journal of Environmental Health Science and Engineering, 2015, 13(1): 74.
|
[40] |
BRILLAS E, SIRéS I, OTURAN M A. Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton's Reaction Chemistry[J]. Chemical Reviews, 2009, 109(12): 6570-6631.
|
[41] |
ÖZCAN A, ŞAHIN Y, OTURAN M A. Complete removal of the insecticide azinphos-methyl from water by the electro-Fenton method – A kinetic and mechanistic study[J]. Water Research, 2013, 47(3): 1470-1479.
|
[42] |
罗玮. 铁系化合物活化H2O2/O2在分析和有机污染物降解中的应用[D]. 武汉: 华中科技大学, 2010.
|
[43] |
KIM T, KIM T-K, ZOH K-D. Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes[J]. Journal of Water Process Engineering, 2020, 33: 101109.
|
[44] |
SHAO L, HE P, YU G, et al. Effect of proteins, polysaccharides, and particle sizes on sludge dewaterability[J]. Journal of Environmental Sciences, 2009, 21(1): 83-88.
|
[45] |
NIU T, ZHOU Z, REN W, et al. Effects of potassium peroxymonosulfate on disintegration of waste sludge and properties of extracellular polymeric substances[J]. International Biodeterioration & Biodegradation, 2016, 106: 170-177.
|
[46] |
TAO N, HU L, FANG D, et al. Supplementation of tea polyphenols in sludge Fenton oxidation improves sludge dewaterability and reduces chemicals consumption[J]. Water Research, 2022, 218: 118512.
|
[47] |
GAO S, WANG Y, ZHANG D, et al. Insight to peroxone-Fe(III) joint conditioning-horizontal electro-dewatering process on water reduction in activated sludge: Performance and mechanisms[J]. Journal of Hazardous Materials, 2021, 402: 123441.
|
[48] |
LIU X, ZHAI Y, LIU G, et al. Mechanistic insights into enhanced waste activated sludge dewaterability with Cu(II) and Cu(II)/H2O2 treatment: Radical and non-radical pathway[J]. Chemosphere, 2022, 288: 132549.
|
[49] |
DONG Y, YUAN H, BAI L, et al. A comprehensive study on simultaneous enhancement of sludge dewaterability and elimination of polycyclic aromatic hydrocarbons by Fe2+ catalyzing O3 process[J]. Science of The Total Environment, 2022, 819: 152015.
|
[50] |
ZHANG W, DAI X, DONG B, et al. New insights into the effect of sludge proteins on the hydrophilic/hydrophobic properties that improve sludge dewaterability during anaerobic digestion[J]. Water Research, 2020, 173: 115503.
|
[51] |
LIANG J, ZHANG L, YAN W, et al. Mechanistic insights into a novel nitrilotriacetic acid-Fe0 and CaO2 process for efficient anaerobic digestion sludge dewatering at near-neutral pH[J]. Water Research, 2020, 184: 116149.
|
[52] |
DING A, LIN W, CHEN R, et al. Improvement of sludge dewaterability by energy uncoupling combined with chemical re-flocculation: Reconstruction of floc, distribution of extracellular polymeric substances, and structure change of proteins[J]. Science of The Total Environment, 2022, 816: 151646.
|
[53] |
LI Y, PAN L, ZHU Y, et al. How does zero valent iron activating peroxydisulfate improve the dewatering of anaerobically digested sludge?[J]. Water Research, 2019, 163: 114912.
|
[54] |
LI Y, XU Q, LIU X, et al. Peroxide/Zero-valent iron (Fe0) pretreatment for promoting dewaterability of anaerobically digested sludge: A mechanistic study[J]. Journal of Hazardous Materials, 2020, 400: 123112.
|
[55] |
田宝珍, 汤鸿霄. Ferron逐时络合比色法测定Fe(Ⅲ)溶液聚合物的形态[J]. 环境化学, 1989, 8(4): 27-34.
|
[56] |
高乔枫. 外加静电场强化三氯化铁絮凝效能关键技术研究[D]. 秦皇岛: 燕山大学, 2021.
|
[57] |
崔蒙蒙. 水铁矿对含磷废水的吸附性能及机理分析[D]. 苏州: 苏州科技大学, 2017.
|
[58] |
LI Y, YUAN X, WU Z, et al. Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process[J]. Chemical Engineering Journal, 2016, 303: 636-645.
|
[59] |
HU S, HU J, LIU B, et al. In situ generation of zero valent iron for enhanced hydroxyl radical oxidation in an electrooxidation system for sewage sludge dewatering[J]. Water Research, 2018, 145: 162-171.
|
[60] |
SONG L-J, ZHU N-W, YUAN H-P, et al. Enhancement of waste activated sludge aerobic digestion by electrochemical pre-treatment[J]. Water Research, 2010, 44(15): 4371-4378.
|
[61] |
ZENG Q, ZAN F, HAO T, et al. Electrochemical pretreatment for stabilization of waste activated sludge: Simultaneously enhancing dewaterability, inactivating pathogens and mitigating hydrogen sulfide[J]. Water Research, 2019, 166: 115035.
|