[1] |
魏志远, 王婷, 徐凯, 等. 平原河网水体氮污染对氮循环菌的影响 [J]. 湖泊科学, 2016, 28(4): 812-817. doi: 10.18307/2016.0414
WEI Z Y, WANG T, XU K, et al. Effects of aquatic nitrogen pollution on the nitrogen cycling bacteria in plain river network [J]. Journal of Lake Sciences, 2016, 28(4): 812-817(in Chinese). doi: 10.18307/2016.0414
|
[2] |
FINLAY J C, HOOD J M, LIMM M P, et al. Light-mediated thresholds in stream-water nutrient composition in a river network [J]. Ecology, 2011, 92(1): 140-150. doi: 10.1890/09-2243.1
|
[3] |
潘泓哲, 李一平, 唐春燕, 等. 多目标优化下平原河网引调水改善水环境效果评估 [J]. 湖泊科学, 2021, 33(4): 1138-1152. doi: 10.18307/2021.0415
PAN H Z, LI Y P, TANG C Y, et al. Evaluation of the effect of water diversion on improving water environment in plain river network under the multi-objective optimization [J]. Journal of Lake Sciences, 2021, 33(4): 1138-1152(in Chinese). doi: 10.18307/2021.0415
|
[4] |
张培培, 吴艺帆, 庞树江, 等. 再生水补给河流北运河CODCr降解系数变化及影响因素 [J]. 湖泊科学, 2019, 31(1): 99-112. doi: 10.18307/2019.0110
ZHANG P P, WU Y F, PANG S J, et al. CODCr degradation coefficient of urban river recharged with reclaimed water and its impacting factors [J]. Journal of Lake Sciences, 2019, 31(1): 99-112(in Chinese). doi: 10.18307/2019.0110
|
[5] |
石子泊, 邹志红. 基于小波变换的ARIMA模型在水质预测中的应用研究 [J]. 环境工程学报, 2014, 8(10): 4550-4554.
SHI Z B, ZOU Z H. Applied study of ARIMA model based on wavelet analysis on water quality prediction [J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4550-4554(in Chinese).
|
[6] |
PIATKA D R, WILD R, HARTMANN J, et al. Transfer and transformations of oxygen in rivers as catchment reflectors of continental landscapes: A review [J]. Earth-Science Reviews, 2021, 220: 103729. doi: 10.1016/j.earscirev.2021.103729
|
[7] |
BOUFFARD D, ACKERMAN J D, BOEGMAN L. Factors affecting the development and dynamics of hypoxia in a large shallow stratified lake: Hourly to seasonal patterns [J]. Water Resources Research, 2013, 49(5): 2380-2394. doi: 10.1002/wrcr.20241
|
[8] |
TAN P Y, ZHU D Z, ZHANG Y P, et al. Optimization of water Flushing in lowland urban river in Jiaxing, Zhejiang using dissolved oxygen as the indicator [J]. MATEC Web of Conferences, 2018, 246: 2048. doi: 10.1051/matecconf/201824602048
|
[9] |
JANE S F, HANSEN G J A, KRAEMER B M, et al. Widespread deoxygenation of temperate lakes [J]. Nature, 2021, 594(7861): 66-70. doi: 10.1038/s41586-021-03550-y
|
[10] |
LI G, LIU J X, DIAO Z H, et al. Subsurface low dissolved oxygen occurred at fresh- and saline-water intersection of the Pearl River Estuary during the summer period [J]. Marine Pollution Bulletin, 2018, 126: 585-591. doi: 10.1016/j.marpolbul.2017.09.061
|
[11] |
BANERJEE A, CHAKRABARTY M, RAKSHIT N, et al. Environmental factors as indicators of dissolved oxygen concentration and zooplankton abundance: Deep learning versus traditional regression approach [J]. Ecological Indicators, 2019, 100: 99-117. doi: 10.1016/j.ecolind.2018.09.051
|
[12] |
ZHU N Y, JI X, TAN J L, et al. Prediction of dissolved oxygen concentration in aquatic systems based on transfer learning [J]. Computers and Electronics in Agriculture, 2021, 180: 105888. doi: 10.1016/j.compag.2020.105888
|
[13] |
CHAKRABORTI L. Impact of upstream plant level pollution on downstream water quality: Evidence from the clean water act [J]. Journal of Environmental Planning and Management, 2021, 64(3): 517-535. doi: 10.1080/09640568.2020.1776227
|
[14] |
ESPINOSA-DÍAZ L F, ZAPATA-REY Y T, IBARRA-GUTIERREZ K, et al. Spatial and temporal changes of dissolved oxygen in waters of the Pajarales complex, Ciénaga Grande de Santa Marta: Two decades of monitoring [J]. Science of the Total Environment, 2021, 785: 147203. doi: 10.1016/j.scitotenv.2021.147203
|
[15] |
JARVIS B M, GREENE R M, WAN Y S, et al. Contiguous low oxygen waters between the continental shelf hypoxia zone and nearshore coastal waters of Louisiana, USA: Interpreting 30 years of profiling data and three-dimensional ecosystem modeling [J]. Environmental Science & Technology, 2021, 55(8): 4709-4719.
|
[16] |
赵海超, 王圣瑞, 赵明, 等. 洱海水体溶解氧及其与环境因子的关系 [J]. 环境科学, 2011, 32(7): 1952-1959.
ZHAO H C, WANG S R, ZHAO M, et al. Relationship between the DO and the environmental factors of the water body in lake Erhai [J]. Environmental Science, 2011, 32(7): 1952-1959(in Chinese).
|
[17] |
黄钰铃, 王泽平, 郎学彪, 等. 泸沽湖水体溶解氧含量时空分布规律研究 [J]. 环境科学与技术, 2020, 43(9): 135-140.
HUANG Y L, WANG Z P, LANG X B, et al. Spatial-temporal distribution of dissolved oxygen in Lugu Lake [J]. Environmental Science & Technology, 2020, 43(9): 135-140(in Chinese).
|
[18] |
白小梅, 李悦昭, 姚志鹏, 等. 三维荧光指纹谱在水体污染溯源中的应用进展 [J]. 环境科学与技术, 2020, 43(1): 172-180,193.
BAI X M, LI Y Z, YAO Z P, et al. Application progress of three-dimensional excitation emission matrix fluorescence spectroscopy in source tracing of water pollution [J]. Environmental Science & Technology, 2020, 43(1): 172-180,193(in Chinese).
|
[19] |
SONG K S, SHANG Y X, WEN Z D, et al. Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis [J]. Water Research, 2019, 150: 403-417. doi: 10.1016/j.watres.2018.12.004
|
[20] |
黄廷林, 方开凯, 张春华, 等. 荧光光谱结合平行因子分析研究夏季周村水库溶解性有机物的分布与来源 [J]. 环境科学, 2016, 37(9): 3394-3401.
HUANG T L, FANG K K, ZHANG C H, et al. Analysis of distribution characteristics and source of dissolved organic matter from Zhoucun reservoir in summer based on fluorescence spectroscopy and PARAFAC [J]. Environmental Science, 2016, 37(9): 3394-3401(in Chinese).
|
[21] |
姜霞, 王书航. 沉积物质量调查评估手册[M]. 北京: 科学出版社, 2012.
JIANG X, WANG S H. Sediment quality investigation and Evaluation Manual [M]. Beijing: Science Press, 2012: 1-17 (in Chinese).
|
[22] |
杨诗笛, 曹星星, 吴攀, 等. 贵州草海岩溶湿地水体不同形态氮的时空分布特征 [J]. 生态学杂志, 2021, 40(1): 93-102.
YANG S D, CAO X X, WU P, et al. Temporal and spatial distribution characteristics of different forms of nitrogen in Karst wetland in Caohai, Guizhou [J]. Chinese Journal of Ecology, 2021, 40(1): 93-102(in Chinese).
|
[23] |
魏复盛主编, 国家环境保护总局, 水和废水监测分析方法编委会编. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
Ministry of Environmental Protection of the People's Republic of China. Methods for Monitoring and Analysis of Water And Wastewater (Fourth Edition)(Supplement) [M]. Beijing: China Environment Science Press, 2002(in Chinese).
|
[24] |
张亚楠, 马启敏, 岳宗恺, 等. 东昌湖表层沉积物中氮的赋存形态 [J]. 环境化学, 2013, 32(3): 459-465.
ZHANG Y N, MA Q M, YUE Z K, et al. Study of nitrogen forms in the sediments from Dongchang Lake [J]. Environmental Chemistry, 2013, 32(3): 459-465(in Chinese).
|
[25] |
李昀, 魏鸿杰, 王侃, 等. 溶解性有机物(DOM)与区域土地利用的关系: 基于三维荧光-平行因子分析(EEM-PARAFAC) [J]. 环境科学, 2019, 40(4): 1751-1759.
LI Y, WEI H J, WANG K, et al. Analysis of the relationship between dissolved organic matter (DOM) and watershed land-use based on three-dimensional fluorescence-parallel factor (EEM-PARAFAC) analysis [J]. Environmental Science, 2019, 40(4): 1751-1759(in Chinese).
|
[26] |
祝鹏, 廖海清, 华祖林, 等. 平行因子分析法在太湖水体三维荧光峰比值分析中的应用 [J]. 光谱学与光谱分析, 2012, 32(1): 152-156.
ZHU P, LIAO H Q, HUA Z L, et al. Parallel factor analysis as an analysis technique for the ratio of three-dimensional fluorescence peak in Taihu Lake [J]. Spectroscopy and Spectral Analysis, 2012, 32(1): 152-156(in Chinese).
|
[27] |
朱爱菊, 孙东耀, 谭季, 等. 亚热带河口陆基养虾塘水体CDOM三维荧光光谱平行因子分析 [J]. 环境科学, 2019, 40(1): 164-171.
ZHU A J, SUN D Y, TAN J, et al. Parallel factor analysis of fluorescence excitation emission matrix spectroscopy of CDOM from the mid-culture period of shrimp ponds in a subtropical estuary [J]. Environmental Science, 2019, 40(1): 164-171(in Chinese).
|
[28] |
吕晶晶, 龚为进, 窦艳艳, 等. PARAFAC和FRI解析ISI中DOM分布 [J]. 中国环境科学, 2019, 39(5): 2039-2047.
LÜ J J, GONG W J, DOU Y Y, et al. The distribution of DOM in aeration pretreatment improved soil infiltration system based on FRI and PARAFAC [J]. China Environmental Science, 2019, 39(5): 2039-2047(in Chinese).
|
[29] |
MURPHY K R, STEDMON C A, GRAEBER D, et al. Fluorescence spectroscopy and multi-way techniques. PARAFAC [J]. Analytical Methods, 2013, 5(23): 6557. doi: 10.1039/c3ay41160e
|
[30] |
刘炜, 焦树林, 李银久, 等. 喀斯特地表植被覆盖变化及其与气候因子相关性分析 [J]. 水土保持研究, 2021, 28(3): 203-215.
LIU W, JIAO S L, LI Y J, et al. Analysis on the correlation between vegetation cover of land surface and climatic factors in Karst area [J]. Research of Soil and Water Conservation, 2021, 28(3): 203-215(in Chinese).
|
[31] |
潘宗源, 吴远斌, 贾龙, 等. 湖南宁乡大成桥岩溶地下水对暴雨响应特征及多元回归预测模型 [J]. 中国岩溶, 2020, 39(2): 232-242.
PAN Z Y, WU Y B, JIA L, et al. Response characteristics of Karst groundwater to rainstorm and the multiple regression prediction model in Dachengqiao, Ningxiang County, Hunan Province [J]. Carsologica Sinica, 2020, 39(2): 232-242(in Chinese).
|
[32] |
杨金强, 赵南京, 殷高方, 等. 城市生活污水处理过程三维荧光光谱在线监测分析方法 [J]. 光谱学与光谱分析, 2020, 40(7): 1993-1997.
YANG J Q, ZHAO N J, YIN G F, et al. On-line monitoring and analysis method of three-dimensional fluorescence spectrum in urban domestic sewage treatment process [J]. Spectroscopy and Spectral Analysis, 2020, 40(7): 1993-1997(in Chinese).
|
[33] |
COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy [J]. Marine Chemistry, 1996, 51(4): 325-346. doi: 10.1016/0304-4203(95)00062-3
|
[34] |
COBLE P G, del CASTILLO C E, AVRIL B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 1998, 45(10/11): 2195-2223.
|
[35] |
LAPIERRE J F, del GIORGIO P A. Partial coupling and differential regulation of biologically and photochemically labile dissolved organic carbon across boreal aquatic networks [J]. Biogeosciences, 2014, 11(20): 5969-5985. doi: 10.5194/bg-11-5969-2014
|
[36] |
BAKER A. Fluorescence excitation-emission matrix characterization of river waters impacted by a tissue mill effluent [J]. Environmental Science & Technology, 2002, 36(7): 1377-1382.
|
[37] |
MURPHY K R, STEDMON C A, WAITE T D, et al. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy [J]. Marine Chemistry, 2008, 108(1/2): 40-58.
|
[38] |
汪庆华, 董岩翔, 周国华, 等. 浙江省土壤地球化学基准值与环境背景值 [J]. 生态与农村环境学报, 2007, 23(2): 81-88.
WANG Q H, DONG Y X, ZHOU G H, et al. Soil geochemical baseline and environmental background values of agricultural regions in Zhejiang Province [J]. Journal of Ecology and Rural Environment, 2007, 23(2): 81-88(in Chinese).
|
[39] |
朱心悦, 逄勇, 徐丽媛. 嘉兴市区水功能区水质达标纳污能力研究 [J]. 水资源与水工程学报, 2014, 25(1): 22-27.
ZHU X Y, PANG Y, XU L Y. Research on water environmental capacity of water quality standard in water function zone of Jiaxing [J]. Journal of Water Resources and Water Engineering, 2014, 25(1): 22-27(in Chinese).
|
[40] |
娄孝飞, 王颖, 张海军, 等. 嘉兴市区河道水质变化趋势及影响因素分析 [J]. 净水技术, 2020, 39(6): 67-72,82.
LOU X F, WANG Y, ZHANG H J, et al. Analysis and influencing factors of river water quality change trends in Jiaxing City [J]. Water Purification Technology, 2020, 39(6): 67-72,82(in Chinese).
|
[41] |
邓思思. 嘉兴平原河网溶解氧平衡研究[D]. 杭州: 浙江大学, 2013.
DENG S S. Dissolved oxygen in lowland Jiaxing rivers[D]. Hangzhou: Zhejiang University, 2013(in Chinese).
|
[42] |
杨雪玲. 非点源溶解性有机物的消毒副产物生成特征研究[D]. 宁波大学, 2018. 11-12
YANG X L, Study on the characteristics of disinfection by-products formation of non-point sources dissolved organic matter[D]. Ningbo University , 2018. 11-12
|
[43] |
王立岷, 赵筠, 陆梦. 京杭运河嘉兴段船舶交通量调查 [J]. 中国水运, 2015(9): 64-65.
WANG L M, ZHAO J, LU M. Survey on vessel traffic volume in Jiaxing Bay, Grand Canal [J]. China Water Transport, 2015(9): 64-65(in Chinese).
|
[44] |
陈朱虹, 陈能汪, 吴殷琪, 等. 河流库区沉积物-水界面营养盐及气态氮的释放过程和通量 [J]. 环境科学, 2014, 35(9): 3325-3335.
CHEN Z H, CHEN N W, WU Y Q, et al. Sediment-water flux and processes of nutrients and gaseous nitrogen release in a China River reservoir [J]. Environmental Science, 2014, 35(9): 3325-3335(in Chinese).
|
[45] |
王书航, 郑朔方, 蔡青, 等. 南湖及周边水体中氮的时空分布、影响因素及控制对策 [J]. 环境工程技术学报, 2020, 10(6): 920-927.
WANG S H, ZHENG S F, CAI Q, et al. Spatio-temporal distribution, influencing factors and control strategies of nitrogen of Nanhu Lake and its surrounding rivers [J]. Journal of Environmental Engineering Technology, 2020, 10(6): 920-927(in Chinese).
|
[46] |
周锴, 钟小燕, 庾从蓉, 等. 太湖河道水深对底泥营养物质再释放过程的影响 [J]. 环境科学学报, 2020, 40(2): 597-603.
ZHOU K, ZHONG X Y, YU C R, et al. Water depth impact on nutrients re-release from sediment in Taihu River Channel [J]. Acta Scientiae Circumstantiae, 2020, 40(2): 597-603(in Chinese).
|
[47] |
史鹏程, 朱广伟, 杨文斌, 等. 新安江水库悬浮颗粒物时空分布、沉降通量及其营养盐效应 [J]. 环境科学, 2020, 41(5): 2137-2148.
SHI P C, ZHU G W, YANG W B, et al. Spatial-temporal distribution of suspended solids and its sedimentation flux and nutrients effects in xin'anjiang reservoir, China [J]. Environmental Science, 2020, 41(5): 2137-2148(in Chinese).
|
[48] |
温腾. 泥沙型浑浊水体中浊度对苦草和黑藻生长的影响[D]. 南京: 南京师范大学, 2008.
WEN T. Effect of water turbidity on the growth and development of Vallisneria Asiatic and Hydrilla verticillata[D]. Nanjing: Nanjing Normal University, 2008(in Chinese).
|
[49] |
朱光敏. 水体浊度和低光条件对沉水植物生长的影响[D]. 南京: 南京林业大学, 2009.
ZHU G M. Effects of turbidity and low light intensity on the growth of macrophytes[D]. Nanjing: Nanjing Forestry University, 2009(in Chinese).
|
[50] |
唐诗, 孙涛, 沈小梅, 等. 水体浊度变化影响下的河口溶解氧系统动力学模型及应用 [J]. 水利学报, 2013, 44(11): 1286-1294.
TANG S, SUN T, SHEN X M, et al. Dissolved oxygen dynamics model and its application in estuary subject to turbidity variability [J]. Journal of Hydraulic Engineering, 2013, 44(11): 1286-1294(in Chinese).
|
[51] |
宋成涛, 吴立志. 沙河黑臭水体污染底泥清除标准分析 [J]. 水运工程, 2018(8): 200-204,213.
SONG C T, WU L Z. Standard analysis for removal of contaminated sediment of black and odorous water in Shahe River [J]. Port & Waterway Engineering, 2018(8): 200-204,213(in Chinese).
|
[52] |
张茜, 冯民权, 郝晓燕. 上覆水环境条件对底泥氮磷释放的影响研究 [J]. 环境污染与防治, 2020, 42(1): 7-11.
ZHANG Q, FENG M Q, HAO X Y. Study on effect of overlying water environment on the nitrogen and phosphorus release of sediment [J]. Environmental Pollution & Control, 2020, 42(1): 7-11(in Chinese).
|