[1] 曾庆玲, 李咏梅, 顾国维. 缺氧活性污泥对17β-雌二醇的吸附与降解研究[J]. 环境科学, 2008, 29(9): 2553-2557. doi: 10.3321/j.issn:0250-3301.2008.09.028
[2] DONG X W, HE L Z, LIU Y, et al. Preparation of highly conductive biochar nanoparticles for rapid and sensitive detection of 17β-estradiol in water[J]. Electrochimica Acta, 2018, 292: 55-62. doi: 10.1016/j.electacta.2018.09.129
[3] SHA H F, YAN B. Design of a ratiometric fluorescence sensor based on metal organic frameworks and Ru(bpy)32+-doped silica composites for 17β-estradiol detection[J]. Journal of Colloid and Interface Science, 2021, 583: 50-57. doi: 10.1016/j.jcis.2020.09.030
[4] 朱艳琼, 韩宝三. 天然雌激素雌酮、雌二醇和雌三醇的分析检测进展[J]. 化学世界, 2020, 61(4): 237-244. doi: 10.19500/j.cnki.0367-6358.20190715
[5] GAO R X, CUI X H, HAO Y, et al. A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17 beta-estradiol in milk[J]. Food Chemistry, 2016, 194: 1040-1047. doi: 10.1016/j.foodchem.2015.08.112
[6] 付银杰, 高彦征, 董长勋, 等. SPE-HPLC/FLD法同时测定水中4种雌激素[J]. 农业环境科学学报, 2012, 31(11): 2296-2303.
[7] MONERRIS M J, AREVALO F J, FERNANDEZ H, et al. Development of a very sensitive electrochemical immunosensor for the determination of 17 beta-estradiol in bovine serum samples[J]. Sensors and Actuators B:Chemical, 2015, 208: 525-531. doi: 10.1016/j.snb.2014.11.048
[8] MATEJICEK D, KUBAN V. Enhancing sensitivity of liquid chromatographic/ion-trap tandem mass spectrometric determination of estrogens by on-line pre-column derivatization[J]. Journal of Chromatography A, 2008, 1192(2): 248-253. doi: 10.1016/j.chroma.2008.03.061
[9] SGHAIER R. B, NET S, GHORBEL-ABID I, et al. Simultaneous detection of 13 endocrine disrupting chemicals in water by a combination of SPE-BSTFA derivatization and GC-MS in Transboundary Rivers (France-Belgium)[J]. Water Air and Soil Pollution, 2017, 228(1): 1-14. doi: 10.1007/s11270-016-3178-3
[10] CARBON E, SHEEDY C, FARENHORST A. Development of competitive ELISAs for 17-estradiol and 17-estradiol plus estrone plus estriol using rabbit polyclonal antibodies[J]. Journal of Environmental Science and Health Part B:Pesticides Food Contaminants and Agricultural Wastes, 2010, 45(2): 145-151.
[11] WEI H B, LIN J M, WU D N, et al. Detection of 17 beta-estradiol in river and human urine by highly sensitive chemiluminescent enzyme immunoassay[J]. Chinese Journal of Analytical Chemistry, 2007, 35(3): 320-324.
[12] PU H, HUANG Z B, SUN D W, et al. Recent advances in the detection of 17β-estradiol in food matrices: A review[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(13): 2144-2157. doi: 10.1080/10408398.2019.1611539
[13] JANEGITZ B C, DOS SANTOS F A, FARIA R C, et al. Electrochemical determination of estradiol using a thin film containing reduced graphene oxide and dihexadecylphosphate[J]. Materials Science & Engineering C:Materials for Biological Applications, 2014, 37: 14-19.
[14] YOO D, PARK Y, CHEON B, et al. Carbon dots as an effective fluorescent sensing platform for metal ion detection[J]. Nanoscale Research Letters, 2019, 14(1): 1-13. doi: 10.1186/s11671-018-2843-4
[15] SUN D W, HUANG L J, PU H B, et al. Introducing reticular chemistry into agrochemistry[J]. Chemical Society Reviews, 2021, 50(2): 1070-1110. doi: 10.1039/C9CS00829B
[16] MINTZ K J, ZHOU Y Q, LEBLANC R M. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure[J]. Nanoscale, 2019, 11(11): 4634-4652. doi: 10.1039/C8NR10059D
[17] ZHANG Q, HOU Q X, HUANG G X, et al. Removal of heavy metals in aquatic environment by graphene oxide composites: A review[J]. Environmental Science and Pollution Research, 2020, 27(1): 190-209. doi: 10.1007/s11356-019-06683-w
[18] 白秋月, 杨春亮, 叶剑芝, 等. 碳量子点荧光探针的设计及其在农残检测中的应用进展[J]. 分析测试学报, 2019, 38(4): 488-494. doi: 10.3969/j.issn.1004-4957.2019.04.019
[19] ZHOU W Z, HUANG P J J, DING J S, et al. Aptamer-based biosensors for biomedical diagnostics[J]. Analyst, 2014, 139(11): 2627-2640. doi: 10.1039/c4an00132j
[20] JIANG F, LIU B A, LU J, et al. Progress and challenges in developing aptamer-functionalized targeted drug delivery systems[J]. International Journal of Molecular Sciences, 2015, 16(10): 23784-23822. doi: 10.3390/ijms161023784
[21] GAN Y, LIANG T, HU Q W, et al. In-situ detection of cadmium with aptamer functionalized gold nanoparticles based on smartphone-based colorimetric system[J]. Talanta, 2020, 208: 1-7.
[22] ZHANG W, LIU Q X, GUO Z H, et al. Practical application of aptamer-based biosensors in detection of low molecular weight pollutants in water sources[J]. Molecules, 2018, 23(2): 1-25.
[23] EISSA S, ZOUROB M. In vitro selection of DNA aptamers targeting beta-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen[J]. Biosensors & Bioelectronics, 2017, 91: 169-174.
[24] CHEN M L, CHEN J H, DING L, et al. Study of the detection of bisphenol A based on a nano-sized metal-organic framework crystal and an aptamer[J]. Analytical Methods, 2017, 9(6): 906-909. doi: 10.1039/C6AY03151J
[25] DAS R, BANDYOPADHYAY R, PRAMANIK P. Carbon quantum dots from natural resource: A review[J]. Materials Today Chemistry, 2018, 8: 96-109. doi: 10.1016/j.mtchem.2018.03.003
[26] INYANG M, GAO B, PULLAMMANAPPALLIL P, et al. Biochar from anaerobically digested sugarcane bagasse[J]. Bioresource Technology, 2010, 101(22): 8868-8872. doi: 10.1016/j.biortech.2010.06.088
[27] BATISTA G, SOUZA R B A, PRATTO B, et al. Effect of severity factor on the hydrothermal pretreatment of sugarcane straw[J]. Bioresource Technology, 2019, 275: 321-327. doi: 10.1016/j.biortech.2018.12.073
[28] ARSHAD M, AHMED S. Cogeneration through bagasse: A renewable strategy to meet the future energy needs[J]. Renewable & Sustainable Energy Reviews, 2016, 54: 732-737.
[29] WANG Z, YU J, ZHANG X, et al. Large-scale and controllable synthesis of graphene quantum dots from rice husk biomass: A comprehensive utilization strategy[J]. ACS Applied Materials & Interfaces, 2016, 8(2): 1434-1439.
[30] MOLAEI M J. Principles, mechanisms, and application of carbon quantum dots in sensors: A review[J]. Analytical Methods, 2020, 12(10): 1266-1287. doi: 10.1039/C9AY02696G
[31] LIU W, DIAO H P, CHANG H H, et al. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging[J]. Sensors and Actuators B:Chemical, 2017, 241: 190-198. doi: 10.1016/j.snb.2016.10.068
[32] ZULFAJRI M, GEDDA G, CHANG C J, et al. Cranberry beans derived carbon dots as a potential fluorescence sensor for selective detection of Fe3+ ions in aqueous solution[J]. ACS Omega, 2019, 4(13): 15382-15392. doi: 10.1021/acsomega.9b01333
[33] WEI Q Y, ZHANG P Y, PU H B, et al. A fluorescence aptasensor based on carbon quantum dots and magnetic Fe3O4 nanoparticles for highly sensitive detection of 17β-estradiol[J]. Food Chemistry, 2022, 373: 1-10.
[34] BARRECA S, BUSETTO M, COLZANI L, et al. Determination of estrogenic endocrine disruptors in water at sub-ng·L-1 levels in compliance with decision 2015/495/EU using offline-online solid phase extraction concentration coupled with high performance liquid chromatography-tandem mass spectrometry[J]. Microchemical Journal, 2019, 147: 1186-1191. doi: 10.1016/j.microc.2019.04.030
[35] MORAES F C, ROSSI B, DONATONI M C, et al. Sensitive determination of 17β-estradiol in river water using a graphene based electrochemical sensor[J]. Analytica Chimica Acta, 2015, 881: 37-43. doi: 10.1016/j.aca.2015.04.043
[36] KANSO H, BARTHELMEBS L, INGUIMBERT N, et al. Immunosensors for estradiol and ethinylestradiol based on new synthetic estrogen derivatives: Application to wastewater analysis[J]. Analytical Chemistry, 2013, 85(4): 2397-2404. doi: 10.1021/ac303406c