[1] |
马慧婕, 沈忱思, 章耀鹏, 等. 纺织工业产排污特征与水污染治理技术进展[J]. 环境科学研究, 2020, 33(11): 2529-2539. doi: 10.13198/j.issn.1001-6929.2020.10.02
|
[2] |
周谨. 无机陶瓷膜在印染废水处理中的应用[J]. 膜科学与技术, 2010, 30(3): 116-119. doi: 10.3969/j.issn.1007-8924.2010.03.023
|
[3] |
陈凤兰, 徐志荣. 《纺织染整工业水污染物排放标准》实施评估: 以浙江省为例[J]. 环境保护与循环经济, 2019, 39(12): 72-78.
|
[4] |
陆茸, 翟康, 徐圃青. 重大环境政策对常州印染行业发展的影响[J]. 江苏科技信息, 2021, 38(22): 72-76. doi: 10.3969/j.issn.1004-7530.2021.22.018
|
[5] |
何锡君, 孙英军, 王贝, 等. 浙江省出入太湖河道水量水质及污染物通量变化(2007—2019年)[J]. 湖泊科学, 2021, 33(5): 1425-1435. doi: 10.18307/2021.0527
|
[6] |
翟康, 李嘉义, 袁逸, 等. 常州市太湖流域水生态环境功能区水污染源排放情况分析[J]. 科技创新与生产力, 2021(3): 41-45. doi: 10.3969/j.issn.1674-9146.2021.03.041
|
[7] |
宋凯. 丙烯酸装置废水焚烧处理控制方案浅析[J]. 石油化工自动化, 2011, 47(2): 33-35. doi: 10.3969/j.issn.1007-7324.2011.02.008
|
[8] |
王瑞, 李圣强, 赵云海. 高浓度丙烯酸废水处理试验研究[J]. 山东工业技术, 2014(12): 40.
|
[9] |
朱又春, 罗爱武, 林美强, 等. 磁分离法处理含油废水研究[J]. 广东工业大学学报, 1998, 15(2): 15-20.
|
[10] |
BENER S, BULCA Ö, PALAS B, et al. Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study[J]. Process Safety and Environmental Protection, 2019, 129: 47-54. doi: 10.1016/j.psep.2019.06.010
|
[11] |
姚佳伟, 杨庆峰, 陆盛森, 等. 磁性纳米颗粒催化NaClO降解有机废水研究[J]. 工业水处理, 2020, 40(10): 39-43.
|
[12] |
庞浩然, 李旭东, 欧文韬, 等. 曝气生物滤池对喷水织机废水BOD5去除效果的研究[J]. 上海交通大学学报(农业科学版), 2009, 27(5): 516-519.
|
[13] |
何晨曦, 房浩亮, 古丽加衣娜尔·巴合提, 等. 印染废水处理研究进展[J]. 轻纺工业与技术, 2021, 50(8): 130-131. doi: 10.3969/j.issn.2095-0101.2021.08.059
|
[14] |
王双, 张倩, 王薇, 等. 反渗透双膜工艺处理印染废水研究进展[J]. 能源环境保护, 2019, 33(3): 1-4. doi: 10.3969/j.issn.1006-8759.2019.03.001
|
[15] |
SUKANYA DEVI R, DHURAI B, SUNDARESAN S, et al. Advanced oxidation processes (AOP) : Effective innovative treatment methods to degrade textile dye effluent[M]//MUTHU S S. Advances in Textile Waste Water Treatments. Springer Press, 2021: 173-203.
|
[16] |
XING M, XU W, DONG C, et al. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes[J]. Chemistry, 2018, 4(6): 1359-1372. doi: 10.1016/j.chempr.2018.03.002
|
[17] |
KREMER M L. The Fenton reaction: Dependence of the rate on pH[J]. The Journal of Physical Chemistry A, 2003, 107(11): 1734-1741. doi: 10.1021/jp020654p
|
[18] |
JAIN B, SINGH A K, KIM H, et al. Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes[J]. Environmental Chemistry Letters, 2018, 16(3): 947-967. doi: 10.1007/s10311-018-0738-3
|
[19] |
SCARIA J, GOPINATH A, NIDHEESH P. A versatile strategy to eliminate emerging contaminants from the aqueous environment: Heterogeneous Fenton process[J]. Journal of Cleaner Production, 2021, 278: 124014. doi: 10.1016/j.jclepro.2020.124014
|
[20] |
MA D, YI H, LAI C, et al. Critical review of advanced oxidation processes in organic wastewater treatment[J]. Chemosphere, 2021, 275: 130104. doi: 10.1016/j.chemosphere.2021.130104
|
[21] |
FU W, YI J, CHENG M, et al. When bimetallic oxides and their complexes meet Fenton-like process[J]. Journal of Hazardous Materials, 2021, 424: 127419.
|
[22] |
XIE Z H, ZHOU H Y, HE C S, et al. Synthesis, application and catalytic performance of layered double hydroxide based catalysts in advanced oxidation processes for wastewater decontamination: A review[J]. Chemical Engineering Journal, 2021, 414: 128713. doi: 10.1016/j.cej.2021.128713
|
[23] |
JIA L, JUN S, KUN F, et al. Heterogeneous catalytic persulfate oxidation of organic pollutants in the aquatic environment: Nonradical mechanism[J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
|
[24] |
LUO H, ZENG Y, HE D, et al. Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review[J]. Chemical Engineering Journal, 2021, 407: 127191. doi: 10.1016/j.cej.2020.127191
|
[25] |
刘玥, 赵来群, 龚为进, 等. 硅酸锌铁催化臭氧氧化水体中的丙烯酸[J]. 化工时刊, 2020, 34(3): 16-20. doi: 10.16597/j.cnki.issn.1002-154x.2020.03.005
|
[26] |
高超, 乐清华, 冯杰. Fenton氧化法降解丙烯酸废水的研究[J]. 环境工程学报, 2009, 3(7): 1279-1283.
|
[27] |
姜晓锋, 高明瑜, 王诗涵, 等. 多相催化氧化-EGSB组合工艺处理丙烯酸废水研究[J]. 工业水处理, 2021, 41(2): 92-96.
|
[28] |
何余生, 李忠, 奚红霞, 等. 气固吸附等温线的研究进展[J]. 离子交换与吸附, 2004, 20(4): 376-384. doi: 10.3321/j.issn:1001-5493.2004.04.012
|
[29] |
FANG J, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J]. Environmental Science & Technology, 2014, 48(3): 1859-1868.
|
[30] |
李博强. UV-LED/NaClO高级氧化工艺对典型PPCPs类污染物的降解[D]. 杭州: 浙江工业大学, 2020.
|
[31] |
PIZZOLATO T, CARISSIMI E, MACHADO E, et al. Colour removal with NaClO of dye wastewater from an agate-processing plant in Rio Grande do Sul, Brazil[J]. International Journal of Mineral Processing, 2002, 65(3/4): 203-211.
|
[32] |
徐文英, 高浩阳. NiOx(OH)y/NaClO催化氧化体系对模拟印染废水中活性艳红K-2BP的降解脱色效果[J]. 环境工程学报, 2021, 15(3): 835-846. doi: 10.12030/j.cjee.202006141
|
[33] |
PUANGPETCH T, SOMMAKETTARIN P, CHAVADEJ S, et al. Hydrogen production from water splitting over eosin Y-sensitized mesoporous-assembled perovskite titanate nanocrystal photocatalysts under visible light irradiation[J]. International Journal of Hydrogen Energy, 2010, 35(22): 12428-12442. doi: 10.1016/j.ijhydene.2010.08.138
|
[34] |
CAO F, ZHANG M T, YUAN S J, et al. Transformation of acetaminophen during water chlorination treatment: Kinetics and transformation products identification[J]. Environmental Science and Pollution Research, 2016, 23(12): 12303-12311. doi: 10.1007/s11356-016-6341-x
|
[35] |
LEI Y, CHEN C S, TU Y J, et al. Heterogeneous Degradation of organic pollutants by persulfate activated by CuO-Fe3O4: mechanism, stability, and effects of pH and bicarbonate ions[J]. Environmental Science & Technology, 2015, 49(11): 6838-6845.
|
[36] |
LI L, ABE Y, KANAGAWA K, et al. Distinguishing the 5, 5-dimethyl-1-pyrroline N-oxide (DMPO)-OH radical quenching effect from the hydroxyl radical scavenging effect in the ESR spin-trapping method[J]. Analytica Chimica Acta, 2004, 512(1): 121-124. doi: 10.1016/j.aca.2004.02.020
|
[37] |
ZHOU X Q, JAWAD A, LUO M Y, et al. Regulating activation pathway of Cu/persulfate through the incorporation of unreducible metal oxides: Pivotal role of surface oxygen vacancies[J]. Applied Catalysis B:Environmental, 2021, 286: 119914. doi: 10.1016/j.apcatb.2021.119914
|
[38] |
彭伟, 方振东, 李晨旭, 等. 单组分过渡金属氧化物及其复合材料催化Oxone去除4-氯酚的效能对比研究[J]. 当代化工, 2019, 48(5): 890-894. doi: 10.3969/j.issn.1671-0460.2019.05.003
|
[39] |
PENG W, LIU J, LI C X, et al. A multipath peroxymonosulfate activation process over supported by magnetic CuO-Fe3O4 nanoparticles for efficient degradation of 4-chlorophenol[J]. Korean Journal of Chemical Engineering, 2018, 35(8): 1662-1672. doi: 10.1007/s11814-018-0074-0
|
[40] |
SUN M Y, LEI Y, CHENG H, et al. Mg doped CuO-Fe2O3 composites activated by persulfate as highly active heterogeneous catalysts for the degradation of organic pollutants[J]. Journal of Alloys and Compounds, 2020, 825: 154036. doi: 10.1016/j.jallcom.2020.154036
|
[41] |
李锋超. 纳米钴锌氧化物活化过硫酸盐(PMS)降解有机污染物研究[D]. 重庆: 重庆大学, 2020.
|
[42] |
李章良, 张国鑫, 潘文斌. Cu/Zn非均相Fenton催化剂的制备及其对环丙沙星的降解效果[J]. 环境工程学报, 2021, 15(3): 806-816. doi: 10.12030/j.cjee.202006148
|