[1] 汤常金, 孙敬方, 董林. 超低温(< 150 ℃)SCR脱硝技术研究进展[J]. 化工学报, 2020, 71(11): 4873-4884.
[2] NIE Y X, DAI J F, HOU Y D, et al. An efficient and environmentally friendly process for the reduction of SO2 by using waste phosphate mine tailings as adsorbent[J]. Journal of Hazardous Materials, 2020, 388: 121748. doi: 10.1016/j.jhazmat.2019.121748
[3] LI S, YANG J Q, WANG C, et al. Removal of NOx from flue gas using yellow phosphorus and phosphate slurry as adsorbent[J]. Energy Fuels, 2018, 32: 5279-5288. doi: 10.1021/acs.energyfuels.7b03964
[4] 田恬, 程茜, 赵雪, 等. 2019年脱硫脱硝行业发展评述及展望[J]. 中国环保产业, 2020, 26(2): 23-25. doi: 10.3969/j.issn.1006-5377.2020.02.007
[5] LANCIA A, MUSMARRA D, PRISCIANDARO M, et al. Catalytic oxidation of calcium bisulfite in the wet limestone–gypsum flue gas desulfurization process[J]. Chemical Engineering Science, 1999, 54(15): 3019-3026.
[6] LANCIA A, MUSMARRA D. Calcium bisulfite oxidation rate in the wet limestone gypsum flue gas desulfurization process[J]. Environmental Science and Technology, 1999, 33(11): 1931-1935. doi: 10.1021/es9805425
[7] 刘敦禹, TERRY W, ROHAN S. 富氧燃烧烟气冷凝塔钠碱法脱硫过程SO2和CO2共吸收建模与实验研究[J]. 化工学报, 2018, 69(9): 4019-4029.
[8] GAO X, DING H L, DU Z, et al. Gas–liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia–based wet flue gas desulfurization[J]. Applied Energy, 2010, 87: 2647-2651. doi: 10.1016/j.apenergy.2010.03.023
[9] VALLE R, NIUBO M, FORMOSA J, et al. Synergistic effect of the parameters affecting wet flue gas desulfurization using magnesium oxides by–products[J]. Chemical Engineering Journal, 2015, 262: 268-277. doi: 10.1016/j.cej.2014.09.085
[10] YAN L Y, LU X F, WANG Q H, et al. Recovery of SO2 and MgO from by–products of MgO wet flue gas desulfurization[J]. Environmental Engineering Science, 2014, 31(11): 621-630. doi: 10.1089/ees.2014.0004
[11] HONG Y H, KIM H, KIM Y J, et al. Nitrile–functionalized tertiary amines as highly efficient and reversible SO2 absorbents[J]. Journal of Hazardous Materials, 2014, 264: 136-143. doi: 10.1016/j.jhazmat.2013.11.026
[12] TAILOR R, ABBOUD M, SAVARJ A. Supported polytertiary amines: highly efficient and selective SO2 adsorbents[J]. Environmental Science & Technology, 2014, 48: 2025-2034.
[13] DARAKE S, HATAMIPOUR M S, RAHIMI A, et al. SO2 removal by seawater in a spray tower: experimental study and mathematical modeling[J]. Chemical Engineering Research and Design, 2016, 109: 180-189. doi: 10.1016/j.cherd.2015.11.027
[14] 武春锦, 吕武华, 梅毅, 等. 湿法烟气脱硫技术及运行经济性分析[J]. 化工进展, 2015, 34(12): 4368-4374. doi: 10.16085/j.issn.1000-6613.2015.12.039
[15] 但智钢, 史菲菲, 王志增, 等. 中国环境工程科技2035技术预见研究[J]. 中国工程科学, 2017, 19(1): 80-86.
[16] 中华人民共和国自然资源部. 中国矿产资源报告[M]. 北京: 地质出版社, 2020.
[17] 吴发富, 王建雄, 刘江涛, 等. 磷矿的分布、特征与开发现状[J]. 中国地质, 2021, 48(1): 82-101. doi: 10.12029/gc20210106
[18] NIE Y X, LI S, WU C J, et al. Efficient removal of SO2 from flue gas with phosphate rock slurry and investigation of reaction mechanism[J]. Industrial & Engineering Chemistry Research, 2018, 57: 15138-15146.
[19] 杨加强, 梅毅, 王驰, 等. 湿法烟气脱硝技术现状及发展[J]. 化工进展, 2017, 36(2): 695-704. doi: 10.16085/j.issn.1000-6613.2017.02.041
[20] 贾丽娟, 张冬冬, 殷在飞, 等. 磷矿浆脱硫新技术及工业应用[J]. 磷肥与复肥, 2016, 31(3): 39-41. doi: 10.3969/j.issn.1007-6220.2016.03.015
[21] 马克猛, 杨林台. 用磷矿浆脱除湿法磷酸中过量SO3的研究及其应用[J]. 磷肥与复肥, 2012, 27(1): 23-25. doi: 10.3969/j.issn.1007-6220.2012.01.007
[22] 武春锦. 磷矿浆脱除燃煤锅炉烟气中SO2的研究[D]. 昆明: 昆明理工大学, 2015.
[23] 吕武华. 动力波洗涤器用于磷矿浆脱除尾气二氧化硫的研究[D]. 昆明: 昆明理工大学, 2016.
[24] 吴琼. 磷矿浆脱硫与磷矿脱镁协同机理研究[D]. 昆明: 昆明理工大学, 2018.
[25] 李红林, 蒋世国. 磷精矿脱硫工艺在硫酸尾气处理中的应用[J]. 磷肥与复肥, 2016, 31(9): 7-10. doi: 10.3969/j.issn.1007-6220.2016.09.004
[26] 李红林, 刘海, 赵建勇. 磷矿浆脱硫技术的开发及工业应用[J]. 硫酸工业, 2017, 4: 39-42. doi: 10.3969/j.issn.1002-1507.2017.04.013
[27] NIE Y X, LI S, DAI J F, et al. Catalytic effect of Mn2+, Fe3+ and Mg2+ ions on desulfurization using phosphate rock slurry as absorbent[J]. Chemical Engineering Journal, 2020, 390: 124568. doi: 10.1016/j.cej.2020.124568
[28] NIE Y X, WANG X J, DAI J F, et al. Mutual promotion effect of SO2 and NOx during yellow phosphorus and phosphate rock slurry adsorption process[J]. AIChE Journal, 2021, 67(8): e17236.
[29] FABIAN R, KOTSIS I, ZIMANY P, et al. Preparation and chemical characterization of high purity fluorapatite[J]. Talanta, 1998, 46: 1273-1277. doi: 10.1016/S0039-9140(97)00391-3
[30] LIU S Y, XIAO W D. Modeling and simulation of a bubbling SO2 absorber with granular limestone slurry and an organic acid additive[J]. Chemical Engineering & Technology, 2006, 29(10): 1167-1173.
[31] KARATZA D, PRISCIANDRAO M, LANCIA A, et al. Calcium bisulfite oxidation in the flue gas desulfurization process catalyzed by iron and manganese ions[J]. Industrial & Engineering Chemistry Research, 2004, 43: 4876-4882.
[32] MA X X, KANEKO T, TASHIMO T. Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder–particle spouted bed[J]. Chemical Engineering Science, 2000, 55: 4643-4652. doi: 10.1016/S0009-2509(00)00090-7
[33] LANCIA A, MUSMARRA D, PEPE F. Model of oxygen absorption into calcium sulfite solutions[J]. Chemical Engineering Journal, 1997, 66: 123-129. doi: 10.1016/S1385-8947(96)03168-3