[1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报(2014)[EB/OL]. [2014-04-17]. http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm.
[2] 焦丽香, 郭加朋. 土壤重金属的污染与治理进展研究[J]. 科技情报开发与经济, 2009, 19(1): 155-156.
[3] 黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 32(3): 409-417.
[4] 李剑睿, 徐应明, 林大松, 等. 农田重金属污染原位钝化修复研究进展[J]. 生态环境学报, 2014, 23(4): 721-728. doi: 10.3969/j.issn.1674-5906.2014.04.029
[5] GUO F Y, DING C F, ZHOU Z G, et al. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification[J]. Ecotoxicology And Environmental Safety, 2018, 161: 164-172. doi: 10.1016/j.ecoenv.2018.05.088
[6] HUANG G Y, GAO R L, YOU J W, et al. Oxalic acid activated phosphate rock and bone meal to immobilize Cu and Pb in mine soils[J]. Ecotoxicology And Environmental Safety, 2019, 174.: 401-407. doi: 10.1016/j.ecoenv.2019.02.076
[7] LIU Y Y, XU Y M, QIN X, et al. Effects of water and organic manure coupling on the immobilization of cadmium by sepiolite[J]. Journal of Soils and Sediments, 2019, 19(2): 798-808. doi: 10.1007/s11368-018-2081-5
[8] MU J, HU Z Y, HUANG L J, et al. Influence of alkaline silicon-based amendment and incorporated with biochar on the growth and heavy metal translocation and accumulation of vetiver grass (Vetiveria zizanioides) grown in multi-metal-contaminated soils[J]. Journal of Soils and Sediments, 2019, 19(5): 2277-2289. doi: 10.1007/s11368-018-2219-5
[9] YU Y Q, ZHANG K W, YANG J Y. Stabilization of Cd and Zn in soil using pairwise mixed amendments of three raw materials: nanohydroxyapatite, nanoiron and nanoalumina[J]. Research on Chemical Intermediates, 2018, 44(5): 2965-2981. doi: 10.1007/s11164-018-3288-1
[10] FAJARDO C, COSTA G, MANDE M, et al. Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe3O4): Soil and freshwater bioassays to assess ecotoxicological impact[J]. Science of the Total Environment, 2019, 656: 421-432. doi: 10.1016/j.scitotenv.2018.11.323
[11] 袁峰, 唐先进, 吴骥子, 等. 两种铁基材料对污染农田土壤砷、铅、镉的钝化修复[J]. 环境科学, 2021, 42(7): 3535-3548.
[12] 丁园, 敖师营, 陈怡红, 等. 4种钝化剂对污染水稻土中Cu和Cd的固持机制[J]. 环境科学, 2021, 42(8): 4037-4044.
[13] 谭科艳, 刘晓端, 刘久臣, 等. 凹凸棒石用于修复铜锌镉重金属污染土壤的研究[J]. 岩矿测试, 2011, 30(4): 451-456. doi: 10.3969/j.issn.0254-5357.2011.04.012
[14] 马博. 凹凸棒石对重金属的钝化及在尾矿和农田中的应用研究[D]. 北京: 中国地质大学, 2018.
[15] ZHANG M D, RAN R L, NAO SAI W Q, et al. Physiological effects of short-term copper stress on rape (Brassica napus L. ) seedlings and the alleviation of copper stress by attapulgite clay in growth medium[J]. Ecotoxicology and Environmental Safety, 2019, 171: 876-886.
[16] 田振华, 薛胜平. 凹凸棒石改性及其修复重金属污染土壤的研究[J]. 应用化工, 2019, 48(4): 883-887. doi: 10.3969/j.issn.1671-3206.2019.04.036
[17] LIANG X F, LI N, HE L Z, et al. Inhibition of Cd accumulation in winter wheat (Triticum aestivum L. ) grown in alkaline soil using mercapto-modified attapulgite[J]. Science of the Total Environment, 2019, 688: 818-826. doi: 10.1016/j.scitotenv.2019.06.335
[18] XU C B, QI J, YANG W J, et al. Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay[J]. Science of the Total Environment, 2019, 686: 476-483. doi: 10.1016/j.scitotenv.2019.05.330
[19] 生态环境部. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618-2018[S]. 北京: 中国标准出版社, 2018.
[20] 任珺, 刘丽莉, 陶玲, 等. 甘肃地区凹凸棒石的矿物组成分析[J]. 硅酸盐通报, 2013, 32(11): 2362-2365.
[21] 陶玲, 杨欣, 颜子皓, 等. 酸活化坡缕石制备重金属钝化材料的研究[J]. 非金属矿, 2018, 41(1): 11-14. doi: 10.3969/j.issn.1000-8098.2018.01.004
[22] XUE W J, HUANG D L, ZENG G M, et al. Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments[J]. Journal of Hazardous Materials, 2018, 341: 381-389. doi: 10.1016/j.jhazmat.2017.06.028
[23] KE X, GUI S F, HUANG H, et al. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China[J]. Chemosphere, 2017, 175: 473-481. doi: 10.1016/j.chemosphere.2017.02.029
[24] NEMATI K, ABU B N K, ABAS M R, et al. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia[J]. Journal of Hazardous Materials, 2011, 192(1): 402-410.
[25] 王英杰, 邹佳玲, 杨文弢, 等. 组配改良剂对稻田系统Pb、Cd和As生物有效性的协同调控[J]. 环境科学, 2016, 37(10): 4004-4010.
[26] WANG W, CHEN H, WANG A. Adsorption characteristics of Cd (II)from aqueous solution onto activated palygorskite[J]. Separation and Purification Technology, 2007, 55(2): 157-164. doi: 10.1016/j.seppur.2006.11.015
[27] 廖启林, 刘聪, 朱伯万, 等. 凹凸棒石调控Cd污染土壤的作用及其效果[J]. 中国地质, 2014, 41(5): 1693-1704. doi: 10.3969/j.issn.1000-3657.2014.05.023
[28] 赵廷伟, 李洪达, 周薇, 等. 施用凹凸棒石对Cd污染农田土壤养分的影响[J]. 农业环境科学学报, 2019, 38(10): 2313-2318. doi: 10.11654/jaes.2019-0783
[29] 雷鸣, 廖柏寒, 秦普丰. 土壤重金属化学形态的生物可利用性评价[J]. 生态环境, 2007(5): 1551-1556.
[30] 关天霞, 何红波, 张旭东, 等. 土壤中重金属元素形态分析方法及形态分布的影响因素[J]. 土壤通报, 2011, 42(2): 503-512. doi: 10.19336/j.cnki.trtb.2011.02.049
[31] 罗宁临, 李忠武, 黄梅, 等. 壳聚糖(改性)-沸石对农田土壤重金属镉钝化技术研究[J]. 湖南大学学报(自然科学版), 2020, 47(4): 132-140.
[32] 章绍康, 弓晓峰, 申钊颖, 等. 改性凹凸棒土对土壤中Cd2+吸附解吸及钝化效果影响[J]. 环境工程, 2019, 37(3): 192-197.
[33] 陈炳睿, 徐超, 吕高明, 等. 6种固化剂对土壤Pb Cd Cu Zn的固化效果[J]. 农业环境科学学报, 2012, 31(7): 1330-1336.
[34] 韩君, 梁学峰, 徐应明, 等. 黏土矿物原位修复镉污染稻田及其对土壤氮磷和酶活性的影响[J]. 环境科学学报, 2014, 34(11): 2853-2860.
[35] 赵庆圆, 李小明, 杨麒, 等. 磷酸盐、腐殖酸与粉煤灰联合钝化处理模拟铅镉污染土壤[J]. 环境科学, 2018, 39(1): 389-398.
[36] ZHU Y G, CHEN S B, YANG J C. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China[J]. Environ International, 2004, 30(3): 351-356. doi: 10.1016/j.envint.2003.07.001
[37] WEN J, ZENG G M. Chemical and biological assessment of Cd-polluted sediment for land use: The effect of stabilization using chitosan-coated zeolite[J]. Journal of Environmental Management, 2018, 212: 46-53.
[38] 武成辉, 李亮, 雷畅, 等. 硅酸盐钝化剂在土壤重金属污染修复中的研究与应用[J]. 土壤, 2017, 49(3): 446-452.
[39] 陶玲, 张晓郡, 刘瑞珍, 等. 热改性坡缕石对土壤镉污染的钝化效果及对土壤镉生态毒性的影响[J]. 环境工程学报, 2021, 15(6): 2008-2017. doi: 10.12030/j.cjee.202101103
[40] WANG H, WANG X J, Li J, et al. Comparison of palygorskite and struvite supported palygorskite derived from phosphate recovery in wastewater for in-situ immobilization of Cu, Pb and Cd in contaminated soil[J]. Journal of Hazardous Materials, 2018, 346: 273-284. doi: 10.1016/j.jhazmat.2017.12.042
[41] 于方群, 周健民, 王火焰, 等. 凹凸棒石环境矿物材料的制备及应用[J]. 土壤, 2009, 41(4): 525-533. doi: 10.3321/j.issn:0253-9829.2009.04.004
[42] 黄昌勇. 土壤学[J]. 中国农业出版社, 2010: 158-168.
[43] 陈雪芳, 熊莲, 王璨, 等. 酸改性对低品位凹凸棒石的白度和组成结构的影响[J]. 硅酸盐通报, 2017, 36(12): 4198-4204.
[44] 于方群, 周健民, 王火焰, 等. 不同浓度酸改性对凹凸棒石黏土磷吸附性能的影响[J]. 土壤学报, 2010, 47(2): 319-324. doi: 10.11766/trxb2010470216
[45] 雷春生, 朱晓峰, 高雯, 等. 酸活化凹凸棒黏土对印染废水中亚甲基蓝的吸附性能[J]. 环境工程学报, 2017, 11(2): 885-891. doi: 10.12030/j.cjee.201509236
[46] 张萍, 文科, 王钺博, 等. 酸处理对坡缕石结构及其苯吸附性能的影响[J]. 矿物学报, 2018, 38(1): 93-99. doi: 10.16461/j.cnki.1000-4734.2018.011