[1] DE C D, WEN Z G, GOTTFRIED O, et al. A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion[J]. Renewable & Sustainable Energy Reviews, 2017, 79: 204-221.
[2] QU X Y, LI Z S, XIE X Y, et al. Survey of composition and generation rate of household wastes in Beijing, China[J]. Waste Management, 2009, 29(10): 2618-2624. doi: 10.1016/j.wasman.2009.05.014
[3] 陈朱蕾, 周磊, 江娟, 等. 粪便与厨余垃圾现场处理研究[J]. 环境科学, 2005(5): 196-199. doi: 10.3321/j.issn:0250-3301.2005.05.039
[4] 徐栋, 沈东升, 冯华军. 厨余垃圾的特性及处理技术研究进展[J]. 科技通报, 2011, 27(1): 130-135. doi: 10.3969/j.issn.1001-7119.2011.01.026
[5] 张红玉. 碳氮比对厨余垃圾堆肥腐熟度的影响[J]. 环境工程, 2013, 31(2): 87-91.
[6] DEWILDA Y, WARNARES S A, ZULKARNAINI I. Study of Generation, Composition, Characteristics, and Recycling Potential of Industrial Food Waste in Padang City// 2nd International Conference on Sustainable Infrastructure (ICSI)[J]. Journal of Physics Conference Series. Yogyakarta, INDONESIA, 2019: 28-29.
[7] 闵海华, 刘淑玲, 郑苇, 等. 厨余垃圾处理处置现状及技术应用分析[J]. 环境卫生工程, 2016, 24(6): 5-7+10. doi: 10.3969/j.issn.1005-8206.2016.06.002
[8] 宗望远, 严继红, 袁巧霞. 厨余垃圾厌氧发酵工艺研究[J]. 科技信息, 2010(35): 668-669. doi: 10.3969/j.issn.1001-9960.2010.35.0506
[9] 李兵, 董志颖, 王英. 两种供能方式对厨余垃圾好氧堆肥的影响研究[J]. 环境工程, 2012, 30(5): 86-90.
[10] 杨延梅. 易利用碳的添加对厨余堆肥氮素转化与氮素损失的影响[J]. 安徽农业科学, 2011, 39(32): 19831-19833+19841. doi: 10.3969/j.issn.0517-6611.2011.32.070
[11] 杨璐, 张影, 汤岳琴, 等. 温度对厨余垃圾高温厌氧消化及微生物群落的影响[J]. 应用与环境生物学报, 2014, 20(4): 704-711.
[12] 宋庆彬, 李爱民, 鞠茂伟, 等. 厨余与污泥联合发酵不同预处理产氢特性研究[J]. 可再生能源, 2008, 26(6): 62-65. doi: 10.3969/j.issn.1671-5292.2008.06.017
[13] 李荣平, 刘研萍, 李秀金. 厨余和牛粪混合厌氧发酵产气性能试验研究[J]. 可再生能源, 2008(2): 64-68. doi: 10.3969/j.issn.1671-5292.2008.02.018
[14] 赵明星. 厨余物厌氧产氢过程控制因素优化研究[D]. 无锡: 江南大学, 2010.
[15] 夏旻, 邰俊, 余召辉. 上海市分类后家庭厨余垃圾理化特性分析[J]. 安徽农业科学, 2015, 43(07): 276-278. doi: 10.3969/j.issn.0517-6611.2015.07.095
[16] JIN C X, SUN S Q, YANG D H, et al. Anaerobic digestion: An alternative resource treatment option for food waste in China[J]. Science of the Total Environment, 2021, 779: 146397. doi: 10.1016/j.scitotenv.2021.146397
[17] 徐静雯, 卢梦筱, 闫涵, 等. 家庭厨余垃圾精准分类及处理现状的满意度研究——以石家庄市为例[J]. 当代化工研究. 2021, (21): 80-82.
[18] 蒋霞, 宋薇, 王富生. 济南市生活垃圾分类治理现状、问题及对策分析[J]. 环境卫生工程, 2021, 29(5): 36-40+45.
[19] 赵志萍, 王炳伟, 陈爱梅, 等. 常州市生活垃圾强制分类立法现状与对策[J]. 环境卫生工程, 2021, 29(5): 46-49. doi: 10.19841/j.cnki.hjwsgc.2021.05.008
[20] 江珣. 城市生活垃圾分类收集现状及对策[J]. 农村经济与科技, 2021, 32(16): 20-22. doi: 10.3969/j.issn.1007-7103.2021.16.008
[21] 王子源. 国内厨余垃圾处理现状及主体工艺论证[J]. 广东化工, 2020, 47(12): 164-166+169. doi: 10.3969/j.issn.1007-1865.2020.12.073
[22] 李欢, 周颖君, 刘建国, 等. 我国厨余垃圾处理模式的综合比较和优化策略[J]. 环境工程学报, 2021, 15(7): 2398-2408. doi: 10.12030/j.cjee.202102050
[23] 刘子旭, 彭晶. 餐厨垃圾特性及处理技术研究[J]. 环境科学与管理, 2015, 40(7): 102-104. doi: 10.3969/j.issn.1673-1212.2015.07.027
[24] 黄芳, 楚德军, 李芳, 等. 北京市餐厨垃圾处置现状及资源化利用前景分析[J]. 中国资源综合利用, 2020, 38(12): 83-86. doi: 10.3969/j.issn.1008-9500.2020.12.027
[25] 靳晨曦, 孙士强, 盛维杰, 等. 中国厨余垃圾处理技术及资源化方案选择[J]. 中国环境科学, 2022, 42(3): 1240-1251. doi: 10.3969/j.issn.1000-6923.2022.03.029
[26] 丁晓翔, 姜忠磊, 汪洋, 等. 国内主要餐厨垃圾处理技术模式探讨分析[J]. 科技创新与应用, 2020(1): 6-11.
[27] IACOVIDOU E, OHANDJA D G, GRONOW J, et al. The household use of food waste disposal units as a waste management option: a review[J]. Critical Reviews In Environmental Science And Technology, 2012, 42(14): 1485-1508. doi: 10.1080/10643389.2011.556897
[28] IACOVIDOU E, OHANDJA D G, VOULVOULIS N. Food waste disposal units in UK households: The need for policy intervention[J]. Science Of The Total Environment, 2012, 423: 1-7. doi: 10.1016/j.scitotenv.2012.01.048
[29] LEGGE A, NICHOLS A, JENSEN H, et al. The characteristics and in-sewer transport potential of solids derived from domestic food waste disposers[J]. Water Science And Technology, 2021, 83(12): 2963-2979. doi: 10.2166/wst.2021.169
[30] YANG X, OKASHIRO T, KUNIYASU K, et al. Impact of food waste disposers on the generation rate and characteristics of municipal solid waste[J]. Journal Of Material Cycles And Waste Management, 2010, 12(1): 17-24. doi: 10.1007/s10163-009-0268-y
[31] HU Y, SHI C, KOBAYASHI T, et al. An integrated anaerobic system for on-site treatment of wastewater from food waste disposer[J]. Environmental Science And Pollution Research, 2020, 27(15): 17587-17595. doi: 10.1007/s11356-019-06651-4
[32] GALIL N I, YAACOV L. Analysis of sludge management parameters resulting from the use of domestic garbage disposers[J]. Water Science And Technology, 2001, 44(10): 27-34. doi: 10.2166/wst.2001.0572
[33] MARASHLIAN N, EL-FADEL M. The effect of food waste disposers on municipal waste and wastewater management[J]. Waste Management & Research, 2005, 23(1): 20-31.
[34] ZAN F X, DAI J, JIANG F, et al. Test of transformation mechanism of food waste and its impacts on sulfide and methane production in the sewer system[J]. Water Science And Technology, 2020, 81(4): 845-852. doi: 10.2166/wst.2020.175
[35] MATTSSON J, HEDSTROM A, VIKLANDER M. Long-term impacts on sewers following food waste disposer installation in housing areas[J]. Environmental Technology, 2014, 35(21): 2643-2651. doi: 10.1080/09593330.2014.915346
[36] KIM M, CHOWDHURY M, NAKHLA G, et al. Characterization of typical household food wastes from disposers: Fractionation of constituents and implications for resource recovery at wastewater treatment[J]. Bioresource Technology, 2015, 183C: 61-69.
[37] MATTSSON J, HEDSTRORM A, ASHLEY R M, et al. Impacts and managerial implications for sewer systems due to recent changes to inputs in domestic wastewater - A review[J]. Journal Of Environmental Management, 2015, 161: 188-197. doi: 10.1016/j.jenvman.2015.06.043
[38] IQBAL A, EKAMA G A, ZAN F X, et al. Potential for co-disposal and treatment of food waste with sewage: a plant-wide steady-state model evaluation[J]. Water Research, 2020, 184: 13.
[39] 杨瑒, 李江华, 段妮娜, 等. 食物垃圾处理器应用的环境经济损益研究[J]. 住宅科技, 2011, 31(1): 53-57. doi: 10.3969/j.issn.1002-0454.2011.01.015
[40] 李江华, 牟心鸣, 张建军, 等. 食物垃圾处理器对城市污水系统的影响研究[J]. 给水排水, 2011, 47(S1): 105-110. doi: 10.13789/j.cnki.wwe1964.2011.s1.018
[41] BOLZONELLA D, PAVAN P, BATTISTONI P, et al. The under sink garbage grinder: a friendly technology for the environment[J]. Environmental Technology, 2003, 24(3): 349-359. doi: 10.1080/09593330309385567
[42] 吴远远, SEGUN G A, 郑明霞, 等. 基于破碎处理的家庭厨余垃圾减量及其对下水的影响[J]. 环境工程学报, 2016, 10(5): 2576-2580. doi: 10.12030/j.cjee.201412211
[43] GUVEN H, OZGUN H, ERSAHIN M E, et al. High-rate activated sludge processes for municipal wastewater treatment: the effect of food waste addition and hydraulic limits of the system[J]. Environmental Science And Pollution Research, 2019, 26(2): 1770-1780. doi: 10.1007/s11356-018-3665-8
[44] BATTISTONI P, FATONE F, PASSACANTANDO D, et al. Application of food waste disposers and alternate cycles process in small-decentralized towns: a case study[J]. Water Research, 2007, 41(4): 893-903. doi: 10.1016/j.watres.2006.11.023
[45] 刘荣杰, 邓舟, 梁卫坤, 等. 深圳市政污水厂对家庭厨余垃圾粉碎直排的耐受分析[J]. 环境卫生工程, 2018, 26(4): 43-47. doi: 10.3969/j.issn.1005-8206.2018.04.011
[46] THOMSEN M, ROMEO D, CARO D, et al. Environmental-economic analysis of integrated organic waste and wastewater management systems: a case study from Aarhus City (Denmark)[J]. Sustainability, 2018, 10(10): 20.
[47] THOMAS P. The effects of food waste disposers on the wastewater system: a practical study[J]. Water And Environment Journal, 2011, 25(2): 250-256. doi: 10.1111/j.1747-6593.2010.00217.x
[48] ZAN F X, IQBAL A, GUO G, et al. Integrated food waste management with wastewater treatment in Hong Kong: Transformation, energy balance and economic analysis[J]. Water Research, 2020, 184: 116-155.
[49] EVANS T D, ANDERSSON P, WIEVEGG A, et al. Surahammar: a case study of the impacts of installing food waste disposers in 50% of households[J]. Water And Environment Journal, 2010, 24(4): 309-319. doi: 10.1111/j.1747-6593.2010.00238.x
[50] ZAN F X, DAI J, HONG Y Z, et al. The characteristics of household food waste in Hong Kong and their implications for sewage quality and energy recovery[J]. Waste Management, 2018, 74: 63-73. doi: 10.1016/j.wasman.2017.11.051
[51] KIM M, NAKHLA G, KELEMAN M. Modeling the impact of food wastes on wastewater treatment plants[J]. Journal Of Environmental Management, 2019, 237: 344-358.
[52] EVANS T D. Domestic food waste - the carbon and financial costs of the options[J]. Proceedings Of The Institution Of Civil Engineers-Municipal Engineer, 2012, 165(1): 3-10. doi: 10.1680/muen.2012.165.1.3
[53] EDWARDS J, OTHMAN M, CROSSIN E, et al. Life cycle inventory and mass-balance of municipal food waste management systems: decision support methods beyond the waste hierarchy[J]. Waste Management, 2017, 69: 577-591. doi: 10.1016/j.wasman.2017.08.011
[54] GUVEN H, ERIKSSON O, WANG Z, et al. Life cycle assessment of upgrading options of a preliminary wastewater treatment plant including food waste addition[J]. Water Research, 2018, 145: 518-530. doi: 10.1016/j.watres.2018.08.061
[55] LUNDIE S, PETERS G M. Life cycle assessment of food waste management options[J]. Journal Of Cleaner Production, 2005, 13(3): 275-286. doi: 10.1016/j.jclepro.2004.02.020
[56] DIGGELMAN C, HAM R K. Household food waste to wastewater or to solid waste? That is the question[J]. Waste Management & Research, 2003, 21(6): 501-514.
[57] GUVEN H, WANG Z, ERIKSSON O. Evaluation of future food waste management alternatives in Istanbul from the life cycle assessment perspective[J]. Journal Of Cleaner Production, 2019, 239: 12.
[58] MAALOUF A, EL-FADEL M. Carbon footprint of integrated waste management systems with implications of food waste diversion into the wastewater stream[J]. Resources Conservation And Recycling, 2018, 133: 263-277. doi: 10.1016/j.resconrec.2018.02.021
[59] TIDAKER P, KARRMAN E, BAKY A, et al. Wastewater management integrated with farming - an environmental systems analysis of a Swedish country town[J]. Resources Conservation And Recycling, 2006, 47(4): 295-315. doi: 10.1016/j.resconrec.2005.12.003
[60] KIM M H, SONG Y E, SONG H B, et al. Evaluation of food waste disposal options by LCC analysis from the perspective of global warming: Jungnang case, South Korea[J]. Waste Management, 2011, 31(9/10): 2112-2120.
[61] MORRIS J, BROWN S, COTTON M, et al. Life cycle assessment harmonization and soil science ranking results on food waste management methods[J]. Environmental Science & Technology, 2017, 51(10): 5360-5367.
[62] MAALOUF A, EL-FADEL M. Effect of a food waste disposer policy on solid waste and wastewater management with economic implications of environmental externalities[J]. Waste Management, 2017, 69: 455-462. doi: 10.1016/j.wasman.2017.08.008
[63] 邴君妍, 罗恩华, 金宜英, 等. 中国餐厨垃圾资源化利用系统建设现状研究[J]. 环境科学与管理, 2018, 43(4): 39-43. doi: 10.3969/j.issn.1673-1212.2018.04.011
[64] 梅冰, 窦法楷, 汪慧莲, 等. 餐厨垃圾处理技术研究进展[J]. 环境卫生工程, 2015, 23(5): 17-18. doi: 10.3969/j.issn.1005-8206.2015.05.006
[65] 赵珍仪, 张哲, 张磊. 厨余垃圾家庭粉碎处理排放适用条件研究[J]. 给水排水, 2019, 55(3): 118-120. doi: 10.13789/j.cnki.wwe1964.2019.03.023
[66] BERNSTAD A, DAVIDSSON A, TSAI J, et al. Tank-connected food waste disposer systems - Current status and potential improvements[J]. Waste Management, 2013, 33(1): 193-203. doi: 10.1016/j.wasman.2012.09.022
[67] DAVIDSSON A, SARAIVA A B, MAGNUSSON N, et al. Technical evaluation of a tank-connected food waste disposer system for biogas production and nutrient recovery[J]. Waste Management, 2017, 65: 153-158. doi: 10.1016/j.wasman.2017.03.052
[68] SANKAI T, DING G, EMORI N, et al. Treatment of domestic wastewater mixed with crushed garbage and garbage washing water by advanced Gappei-shori Johkaso[J]. Water Science And Technology, 1997, 36(12): 175-182. doi: 10.2166/wst.1997.0445
[69] ICHINARI T, OHTSUBO A, OZAWA T, et al. Wastewater treatment performance and sludge reduction properties of a household wastewater treatment system combined with an aerobic sludge digestion unit[J]. Process Biochemistry, 2008, 43(7): 722-728. doi: 10.1016/j.procbio.2008.02.016
[70] HELLSTROM D, BAKY A, JEPPSSON U, et al. Comparison of environmental effects and resource consumption for different wastewater and organic waste management systems in a new city area in Sweden[J]. Water Environment Research, 2008, 80(8): 708-718. doi: 10.2175/106143008X276705