[1] WANG X, LIU B, SHI B, et al. Transformation of leaf waste into 3D graphene for water treatment[J]. Desalination and Water Treatment, 2019, 168: 348 − 356. doi: 10.5004/dwt.2019.24654
[2] LIANG Y, PEI M, WANG D, et al. Improvement of soil ecosystem multifunctionality by dissipating manure-induced antibiotics and resistance genes[J]. Environmental Science & Technology, 2017, 51(9): 4988 − 4998.
[3] 程扬, 沈启斌, 刘子丹, 等. 两种生物炭的制备及其对水溶液中四环素去除的影响因素[J]. 环境科学, 2019, 40(3): 1328 − 1336. doi: 10.13227/j.hjkx.201807076
[4] 周启星, 罗义, 王美娥. 抗生素的环境残留、生态毒性及抗性基因污染[J]. 生态毒理学报, 2007, 2(3): 243 − 251.
[5] KHAN M, BAE H, JUNG J. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway[J]. Journal of Hazardous Materials, 2010, 181(1-3): 659 − 665. doi: 10.1016/j.jhazmat.2010.05.063
[6] 张树清, 张夫道, 刘秀梅, 等. 高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J]. 中国农业科学, 2006, 39(2): 337 − 343. doi: 10.3321/j.issn:0578-1752.2006.02.018
[7] ZHUANG Y, YU F, MA J, et al. Facile synthesis of three-dimensional graphene–soy protein aerogel composites for tetracycline adsorption[J]. Desalination and Water Treatment, 2016, 57: 9510 − 9519. doi: 10.1080/19443994.2015.1029530
[8] 张玮玮, 弓爱君, 邱丽娜, 等. 废水中抗生素降解和去除方法的研究进展[J]. 中国抗生素杂志, 2013, 38(6): 401 − 410. doi: 10.3969/j.issn.1001-8689.2013.06.001
[9] PUTRA E, PRANOWO R, SUNARSO J, et al. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics[J]. Water Research, 2009, 43(9): 2419 − 2430. doi: 10.1016/j.watres.2009.02.039
[10] AKSU Z, TUNC Ö. Application of biosorption for penicillin G removal: comparison with activated carbon[J]. Process Biochemistry, 2005, 40(2): 831 − 847. doi: 10.1016/j.procbio.2004.02.014
[11] ÁLVAREZ-TORRELLAS S, RIBEIRO R S, GOMES H, et al. Removal of antibiotic compounds by adsorption using glycerol-based carbon materials[J]. Chemical Engineering Journal, 2016, 296: 277 − 288. doi: 10.1016/j.cej.2016.03.112
[12] YU F, LI Y, HAN S, et al. Adsorptive removal of antibiotics from aqueous solution using carbon materials[J]. Chemosphere, 2016, 153: 365 − 385. doi: 10.1016/j.chemosphere.2016.03.083
[13] ZHUANG Y, YU F, CHEN H, et al. Alginate/graphene double-network nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity[J]. Journal of Materials Chemistry A, 2016, 4(28): 10885 − 10892. doi: 10.1039/C6TA02738E
[14] NAKAUMA M, FUNAMI T, FANG Y, et al. Calcium binding and calcium-induced gelation of sodium alginate modified by low molecular-weight polyuronate[J]. Food Hydrocolloids, 2016, 55: 65 − 76. doi: 10.1016/j.foodhyd.2015.10.021
[15] LI X, QI Y, LI Y, et al. Novel magnetic beads based on sodium alginate gel crosslinked by zirconium(IV) and their effective removal for Pb2+ in aqueous solutions by using a batch and continuous systems[J]. Bioresource Technology, 2013, 142: 611 − 619. doi: 10.1016/j.biortech.2013.05.081
[16] KONG Y, ZHUANG Y, SHI B. Tetracycline removal by double-metal-crosslinked alginate/graphene hydrogels through an enhanced Fenton reaction[J]. Journal of Hazardous Materials, 2020, 382: 121060. doi: 10.1016/j.jhazmat.2019.121060
[17] CRUZ A, COUTO L, ESPLUGAS S, et al. Study of the contribution of homogeneous catalysis on heterogeneous Fe(III)/alginate mediated photo-Fenton process[J]. Chemical Engineering Journal, 2017, 318: 272 − 280. doi: 10.1016/j.cej.2016.09.014
[18] 叶春松, 黄建伟, 刘通, 等. 燃煤电厂烟气脱硫废水处理方法与技术进展[J]. 环境工程, 2017, 35(11): 10 − 13+51. doi: 10.13205/j.hjgc.201711003
[19] 杨跃伞, 苑志华, 张净瑞, 等. 燃煤电厂脱硫废水零排放技术研究进展[J]. 水处理技术, 2017, 43(6): 29 − 33. doi: 10.16796/j.cnki.1000-3770.2017.06.006
[20] 李兵, 张其龙, 王学同, 等. 燃煤电厂废水零排放处理技术[J]. 水处理技术, 2017, 43(6): 24 − 28+33. doi: 10.16796/j.cnki.1000-3770.2017.06.005
[21] LIU H, YANG F, ZHENG Y, et al. Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology[J]. Water Research, 2011, 45(1): 145 − 154. doi: 10.1016/j.watres.2010.08.017
[22] 丁文川, 田秀美, 王定勇, 等. 腐殖酸对生物炭去除水中Cr(Ⅵ)的影响机制研究[J]. 环境科学, 2012, 33(11): 3847 − 3853.
[23] PENG B, CHEN L, QUE C, et al. Adsorption of antibiotics on graphene and biochar in aqueous solutions induced by π-π interactions[J]. Scientific Reports, 2016, 6(1): 1 − 10. doi: 10.1038/s41598-016-0001-8
[24] WANG H, FANG C, WANG Q, et al. Sorption of tetracycline on biochar derived from rice straw and swine manure[J]. RSC Advances, 2018, 8(29): 16260 − 16268. doi: 10.1039/C8RA01454J
[25] OCAMPO-PÉREZ R, LEYVA-RAMOS R, RIVERA-UTRILLA J, et al. Modeling adsorption rate of tetracyclines on activated carbons from aqueous phase[J]. Chemical Engineering Research and Design, 2015, 104: 579 − 588. doi: 10.1016/j.cherd.2015.09.011
[26] LI H, HU J, MENG Y, et al. An investigation into the rapid removal of tetracycline using multilayered graphene-phase biochar derived from waste chicken feather[J]. Science of the Total Environment, 2017, 603-604: 39 − 48. doi: 10.1016/j.scitotenv.2017.06.006