[1] |
李海龙. 吸附法净化有机废气模拟与实验研究[D]. 长沙: 湖南大学, 2007.
|
[2] |
李守信, 宋剑飞, 李立清, 等. 挥发性有机化合物处理技术的研究进展[J]. 化工环保, 2008, 28(1): 1-7. doi: 10.3969/j.issn.1006-1878.2008.01.001
|
[3] |
ROSOCHA L A. Nonthemal plasma applications to the environment gaseous eletronics and power conditioning[J]. IEEE Transactions On Plasma Science, 2005, 33(1): 129-137. doi: 10.1109/TPS.2004.841800
|
[4] |
FUTAMURA S, ZHANG A H, EINAGA H. Involvement of catalyst materials in non-thermal plasma chemical processing of air pollutants[J]. Catalysis Today, 2002, 72(1): 259-265.
|
[5] |
KANG M, KIM B J, CHO S M. Decomposition of toluene using an atmospheric pressure plasma TiO2 catalytic system[J]. Journal Of Molecular Catalysis A Chemical, 2002, 180(1): l25-132.
|
[6] |
KIM H H, OH S M, OGATA A, et a1. Decomposition of gas-phase benzene using plasma-driven catalyst(PDC)reactor packed with Ag/TiO2 catalyst[J]. Applied Catalysis B:Environmental, 2005, 56: 213-220. doi: 10.1016/j.apcatb.2004.09.008
|
[7] |
何泽, 李桂英, 安太成, 等. 生物滴滤塔中两种优势菌种对高浓度甲苯废气净化对比实验[J]. 环境工程, 2007, 25(2): 39-42. doi: 10.3969/j.issn.1000-8942.2007.02.012
|
[8] |
张丽, 张小平, 黄伟海. 生物法净化处理挥发性有机化合物技术[J]. 化工环保, 2005, 25(2): 100-103. doi: 10.3969/j.issn.1006-1878.2005.02.006
|
[9] |
COX H H J, DESHUSSES M A. Effect of starvation on the performance and re-acclimation of biotrickling filters for air pollution control[J]. Environmental Science & Technology, 2002, 36: 3069-3073.
|
[10] |
舒娟娟, 李素媛, 黄雯, 等. 低浓度有机废气纳米TiO2光催化处理技术[J]. 工业安全与环保, 2006, 32(11): 4-6. doi: 10.3969/j.issn.1001-425X.2006.11.002
|
[11] |
王宝庆, 马广大, 陈剑宁. 挥发性有机废气净化技术研究进展[J]. 环境污染治理技术与设备, 2006, 4(5): 47-51.
|
[12] |
SON Y S, KIM T H, CHOI C Y, et al. Treatment of toluene and its by-products using an electron beam/ultra-fine bubble hybrid system[J]. Radiation Physics & Chemistry, 2018, 144(3): 367-372.
|
[13] |
GUO T, LI X S, LI J Q, et al. On-line quantification and human health risk assessment of organic by-products from the removal of toluene in air using non-thermal plasma[J]. Chemosphere, 2018, 194(3): 139-146.
|
[14] |
ZHU F S, LI X D, ZHANG H, et al. Destruction of toluene by rotating gliding arc discharge[J]. Fuel, 2016, 176: 78-85. doi: 10.1016/j.fuel.2016.02.065
|
[15] |
CHUN Y N, KIM S C, YOSHIKAWA K. Removal characteristics of tar benzene using the externally oscillated plasma reformer[J]. Chemical Engineering And Processing Process Intensification, 2012, 57/58(1): 65-74.
|
[16] |
ZHU T, LI J, JIN Y, et al. Decomposition of benzene by non-thermal plasma processing: Photocatalyst and ozone effect[J]. International Journal Of Environmental Science And Technology, 2008, 5(3): 375-384. doi: 10.1007/BF03326032
|
[17] |
ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds[J]. Chemical Review, 2003, 103: 4605-4638. doi: 10.1021/cr0206420
|
[18] |
ATKINSON R. Gas-phase tropospheric chemistry of organic compounds: A review[J]. Atmospheric Environment, 2007, 41: 200-240. doi: 10.1016/j.atmosenv.2007.10.068
|
[19] |
SHEN X L, ZHAO Y, CHEN Z M, et al. Heterogeneous reactions of volatile organic compounds in the atmosphere[J]. Atmospheric Environment, 2013, 68: 297-314. doi: 10.1016/j.atmosenv.2012.11.027
|
[20] |
DANG J, SHI X L, ZHANG Q Z, et al. Mechanism and kinetic properties for the OH-initiated atmospheric oxidation degradation of 9, 10-Dichlorophenanthrene[J]. Science Of The Total Environment, 2015, 505(C): 787-794.
|
[21] |
WEN Z C, WANG Z H, XU J R, et al. Quantum chemistry study on the destruction mechanism of 2, 3, 7, 8-TCDD by OH and O3 radicals.[J]. Chemosphere, 2013, 92(3): 293-298. doi: 10.1016/j.chemosphere.2013.03.027
|
[22] |
王兵波. 计算流体力学的发展及应用研究[J]. 南方农机, 2018, 49(9): 145. doi: 10.3969/j.issn.1672-3872.2018.09.113
|
[23] |
冯良, 刘鲲, 韩国园, 等. 大气式燃气燃烧器引射器的CFD研究[J]. 上海煤气, 2003(2): 13-16. doi: 10.3969/j.issn.1009-4709.2003.02.005
|
[24] |
MOUSAVI S M, FATEHI H, BAI X S. Numerical study of the combustion and application of SNCR for NOx reduction in a lab-scale biomass boiler[J]. Fuel, 2021, 293: 120154. doi: 10.1016/j.fuel.2021.120154
|
[25] |
TEODOSIU C, ILIE V, TEODOSIU R. Modelling of volatile organic compounds concentrations in rooms due to electronic devices[J]. Process Safety & Environmental Protection, 2016: S0957582016300994.
|
[26] |
WEN Z C, LIU Y, SHEN H Z, et al. Mechanism and kinetic study on the degradation of typical biomass tar components (Toluene, Phenol and Naphthalene) by ozone[J]. Ozone:Science & Engineering, 2021, 43(1): 78-87.
|
[27] |
WEN Z C, LIU Y, SHEN H Z, et al. A theoretical study on the destruction of typical biomass tar components (toluene, phenol and naphthalene) by OH radical[J]. Journal of the Indian Chemical Society, 2021, 98(2): 100015. doi: 10.1016/j.jics.2021.100015
|
[28] |
李海峰, 吴冀川, 刘建波, 等. 有限元网格剖分与网格质量判定指标[J]. 中国机械工程, 2012, 23(3): 368-377. doi: 10.3969/j.issn.1004-132X.2012.03.026
|
[29] |
XI J Y, SAINGAM P, GU F, et al. Effect of continuous ozone injection on performance and biomass accumulation of biofilters treating gaseous toluene[J]. Applied Microbiology and Biotechnology, 2015, 99(1): 33-42. doi: 10.1007/s00253-014-6248-8
|
[30] |
MASUHIRO K, YUJI M, KUNIHITO T, et al. Highly efficient VOC decomposition using a complex system (OH Radical, Ozone-UV, and TiO2)[J]. Plasma Processes and Polymers, 2006, 3(9): 727-733. doi: 10.1002/ppap.200600040
|