[1] |
REN21. Renewables 2021 Global status report[R/OL]. 2021. https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf.
|
[2] |
International Energy Agency.World energy outlook 2021 [R/OL]. 2021. https://iea.blob.core.windows.net/assets/888004cf-1a38-4716-9e0c-3b0e3fdbf609/WorldEnergyOutlook2021.pdf.
|
[3] |
International Union of Railways. Design a better future-vision of rail 2030[R/OL]. 2021. https://uic.org/IMG/pdf/uic-design-a-better-future-vision-of-rail-2030.pdf.
|
[4] |
BAUER S, HOYE B J. Migratory animals couple biodiversity and ecosystem functioning worldwide[J]. Science, 2014, 344: 54 − 62.
|
[5] |
CLAIRE A, RUNG E, JAMES E M, et al. Protected areas and global conservation of migratory birds[J]. Science, 2015, 350(6265): 1255 − 1258. doi: 10.1126/science.aac9180
|
[6] |
LOSS S R, WILL T, MARRA P P. Estimates of bird collision mortality at wind facilities in the contiguous United States[J]. Biological Conservation, 2013, 168: 201 − 209. doi: 10.1016/j.biocon.2013.10.007
|
[7] |
LOSS S R, WILL T, MARRA P P. Refining estimates of bird collision and electrocution mortality at power lines in the United States[J]. PLOS ONE, 2014, 9(7): e101565. doi: 10.1371/journal.pone.0101565
|
[8] |
ELADIO L G, JUAN E M, Israel H, et al. On-board video recording unravels bird behavior and mortality produced by high-speed trains[J]. Frontiers in Ecology and Evolution, 2017, 5(117): 1 − 9.
|
[9] |
THERKILDSEN O R, BALSBY T J S, KJELDSEN J P, et al. Changes in flight paths of large-bodied birds after construction of large terrestrial wind turbines[J]. Journal of Environmental Management, 2021, 290: 112647. doi: 10.1016/j.jenvman.2021.112647
|
[10] |
曹垒, 孟凡娟, 赵青山. 基于前沿监测技术探讨 “大开发” 对鸟类迁徙及其栖息地的影响[J]. 中国科学院院刊, 2021, 36(4): 436 − 447.
|
[11] |
中国气象局. 我国风能资源储量与分布[EB/OL]. 2009. http://www.cma.gov.cn/kppd/kppdkpdt/201211/t20121127_192640.html.
|
[12] |
中电传媒能源情报研究中心. 中国能源大数据报告2021[R/OL]. 2021.
|
[13] |
国家能源局. 我国风电并网装机突破3亿千瓦[EB/OL]. 2021. http://www.nea.gov.cn/2021-11/30/c_1310343188.htm.
|
[14] |
李晓红. 《风能北京宣言》发布[N/OL]. 2020. https://www.cet.com.cn/wzsy/ycxw/2678231.shtml.
|
[15] |
刘振亚, 张启平. 国家电网发展模式研究[J]. 中国电机工程学报, 2013, 33(7): 1 − 10.
|
[16] |
赵畹君, 陶瑜. 葛洲坝——上海直流输电工程的基本特点[J]. 电网技术, 1988, (1): 3 − 10.
|
[17] |
中国电力企业联合会. 中国电力行业年度发展报告2021[R/OL]. 2021.
|
[18] |
徐鹤寿. 秦沈客运专线建造技术[J]. 中国铁道科学, 2003, 24(2): 1 − 7. doi: 10.3321/j.issn:1001-4632.2003.02.001
|
[19] |
国家统计局. 中国统计年鉴2021 (高速铁路基本情况) [EB/OL]. 2021. http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.html.
|
[20] |
国家铁路局. 中国高速铁路[EB/OL]. 2021. http://www.nra.gov.cn/ztzl/hyjc/gstl/.
|
[21] |
中国国家铁路集团有限公司. 新时代交通强国铁路先行规划纲要[R/OL]. 2020. http://www.china-railway.com.cn/xwzx/rdzt/ghgy/gyqw/202008/t20200812_107636.html.
|
[22] |
中华人民共和国国家发展和改革委员会. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[R/OL]. 2021. http://gbdy.ndrc.gov.cn/gbdyzcjd/202103/W020210323531070147731.pdf.
|
[23] |
MARTIN G R. Understanding bird collisions with man-made objects: A sensory ecology approach[J]. Ibis, 2011, 153(2): 239 − 254. doi: 10.1111/j.1474-919X.2011.01117.x
|
[24] |
BERNARDINO J, BEVANGER K, BARRIENTOS R, et al. Bird collisions with power lines: State of the art and priority areas for research[J]. Biological Conservation, 2018, 222: 1 − 13. doi: 10.1016/j.biocon.2018.02.029
|
[25] |
WANG S, WANG S, SMITH P. Ecological impacts of wind farms on birds: Questions, hypotheses, and research needs[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 599 − 607. doi: 10.1016/j.rser.2015.01.031
|
[26] |
刘越强, 赵华. 云南鸟类敏感区域已建风电场鸟撞影响调查[J]. 环境科学导刊, 2017, 36(A02): 167 − 169.
|
[27] |
POPP J N, BOYLE S P. Railway ecology: Underrepresented in science?[J] Basic and Applied Ecology, 2017, 19: 84-93.
|
[28] |
HU H, TANG J, WANG Y, et al. Evaluating bird collision risk of a high-speed railway for the crested ibis[J]. Transportation Research Part D:Transport and Environment, 2020, 87: 1 − 11.
|
[29] |
HUNT W G. Continuing studies of golden eagles at Altamont pass[C]// Proceedings of the National Avian-Wind Power Planning Meeting IV, 2001.
|
[30] |
DWYER J F, PANDEY A K, MCHALE L A, et al. Near-ultraviolet light reduced Sandhill crane collisions with a power line by 98%[J]. The Condor, 2019, 121(2): 1 − 10.
|
[31] |
马鸣, 蒋可威, 梅宇, 等. 灰鹤在迁徙途中撞击高压线伤亡分析与视觉盲区初探[J]. 动物学杂志, 2021, 56(5): 648 − 654.
|
[32] |
王博驰, 裴雯, 色拥军, 等. 卫星跟踪揭示撞击电线是黑颈鹤幼鸟越冬地死亡的主要原因[J]. 动物学杂志, 2021, 56(2): 161 − 170.
|
[33] |
ZHANG L, WANG X, ZHANG J, et al. Formulating a list of sites of waterbird conservation significance to contribute to China's Ecological Protection Red Line[J]. Bird Conservation International, 2017, 27(2): 1 − 14.
|
[34] |
XU Y, SI Y, WANG Y, et al. Loss of functional connectivity in migration networks induces population decline in migratory birds[J]. Ecological Applications, 2019, 29(7): 1 − 10.
|
[35] |
FOX A D, PETERSEN I K. Offshore wind farms and their effects on birds[J]. Dansk Ornithologisk Forenings Tidsskrift, 2019, 113: 86 − 101.
|
[36] |
PETERSEN I K, CHRISTENSEN T K, KAHLERT J, et al. Final results of bird studies at the offshore wind farms at Nysted and Horns Rev, Denmark[R]. Commissioned Report by DONG Energy and Vattenfall A/S. National Environmental Research Institute, Denmark. 2006.
|
[37] |
MENDEL B, SCHWEMMER P, PESCHKO V, et al. Operational offshore wind farms and associated ship traffic cause profound changes in distribution patterns of Loons (Gavia spp. )[J]. Journal of Environmental Management, 2019, 231: 429 − 438. doi: 10.1016/j.jenvman.2018.10.053
|
[38] |
程驰, 张洁瑜, 吴剑华. 铁路建设项目对鸟类影响研究及保护措施分析[J]. 铁路节能环保与安全卫生, 2021, 11(3): 26 − 29.
|
[39] |
辜小安. 铁路噪声对鸟类栖息繁殖影响初探[J]. 铁道劳动安全卫生与环保, 1999(2): 14 − 16.
|
[40] |
李帆, 李阳林, 张宇, 等. 架空输电线路涉鸟故障分析与防范[J]. 中国电力, 2019, 52(10): 92 − 99.
|
[41] |
段玉宝, 田秀华, 朱书玉, 等. 黄河三角洲自然保护区东方白鹳的巢址利用[J]. 生态学报, 2011, 31(3): 666 − 672.
|
[42] |
DESHOLM M, FOX A D, BEASLEY P D L, et al. Remote techniques for counting and estimating the number of bird-wind turbine collisions at sea: A review[J]. Ibis, 2006, 148(S1): 76 − 89.
|
[43] |
BAND B. Using a Collision Risk Model to Assess Bird Collision Risks for Offshore Windfarms[R/OL]. 2012. https://www.bto.org/sites/default/files/u28/downloads/Projects/Fin al_Report_SOSS02_Band1ModelGuidance.pdf.
|
[44] |
DRACHMANN J, WAAGNER S R, NIELSEN H H. Pink-footed Goose and Common crane exhibit high levels of collision avoidance at a Danish onshore wind farm[J]. Dansk Ornithologisk Forenings Tidsskrift, 2021, 115: 253 − 271.
|
[45] |
FOX A D, DESHOLM M, KAHLERT J, et al. Information needs to support environmental impact assessment of the effects of European marine offshore wind farms on birds[J]. Ibis, 2006, 148: 129 − 144. doi: 10.1111/j.1474-919X.2006.00510.x
|
[46] |
LANGSTON R H, FOX A D, DREWITT A L. Conference plenary discussion, conclusions and recommendations[J]. Ibis, 2006, 148: 210 − 216. doi: 10.1111/j.1474-919X.2006.00512.x
|
[47] |
MASDEN E A, FOX A D, FURNESS R W, et al. Cumulative impact assessments and bird/wind farm interactions: Developing a conceptual framework[J]. Environmental Impact Assessment Review, 2010, 30(1): 1 − 7. doi: 10.1016/j.eiar.2009.05.002
|
[48] |
TRACY D, ASKEW L, BAINBRIDGE B, et al. Avian impact on overhead transmission line construction[C]//In: Pugh, A. D. (Ed.), Proceedings of the 2012 Electrical Transmission and Substation Structures Conference. American Society of Civil Engineers, 2012, 336-347.
|
[49] |
冯晓娟, 米湘成, 肖治术, 等. 中国生物多样性监测与研究网络建设及进展[J]. 中国科学院院刊, 2019, 34(12): 1389 − 1398.
|
[50] |
THAXTER C B, BUCHANAN G M, CARR J, et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment[J]. Proceedings: Biological Sciences, 2017, 284(1862): 1 − 10.
|
[51] |
APLIC. Reducing Avian Collisions with Power Lines: The State of the Art in 2012[R]. Washington DC, 2012.
|
[52] |
ARNETT E B, MAY R F. Mitigating wind energy impacts on wildlife: approaches for multiple taxa[J]. Human-Wildlife Interactions, 2016, 10(1): 28 − 41.
|
[53] |
BARRIENTOS R, ALONSO J C, PONCE C, et al. Meta-analysis of the effectiveness of marked wire in reducing avian collisions with power lines[J]. Conservation Biology, 2011, 25: 893 − 903. doi: 10.1111/j.1523-1739.2011.01699.x
|