[1] 任娇, 尹诗杰, 郭淑芬. 太原市大气PM2.5中水溶性离子的季节污染特征及来源分析 [J]. 环境科学学报, 2020, 40(9): 3120-3130. REN J, YIN S J, GUO S F. Seasonal variation and source analysis of water-soluble ions in PM2.5 in Taiyuan [J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3120-3130(in Chinese).
[2] 贺开来, 李娅绮, 徐红梅, 等. 家用燃料燃烧排放PM2.5的特征及其对肺功能的影响: 以陕西蓝田县为例 [J]. 环境化学, 2020, 39(2): 552-565. doi: 10.7524/j.issn.0254-6108.2019032301 HE K L, LI Y Q, XU H M, et al. Characteristics of PM2.5 emitted from domestic fuel combustion and its effect on lung function: A case study in Lantian County, Shaanxi, China [J]. Environmental Chemistry, 2020, 39(2): 552-565(in Chinese). doi: 10.7524/j.issn.0254-6108.2019032301
[3] HE K L, XU H M, FENG R, et al. Characteristics of indoor and personal exposure to particulate organic compounds emitted from domestic solid fuel combustion in rural areas of northwest China [J]. Atmospheric Research, 2021, 248: 105181. doi: 10.1016/j.atmosres.2020.105181
[4] 牛照地, 吴惠忠, 丁亚磊, 等. 银川市冬、春季大气PM2.5中12种元素浓度差异及来源分析 [J]. 现代预防医学, 2020, 47(15): 2708-2711. NIU Z D, WU H Z, DING Y L, et al. Difference and source of 12 elements in PM2.5 in winter and spring, Yinchuan [J]. Modern Preventive Medicine, 2020, 47(15): 2708-2711(in Chinese).
[5] XU H M, LI Y Q, GUINOT B, et al. Personal exposure of PM2.5 emitted from solid fuels combustion for household heating and cooking in rural Guanzhong Plain, northwestern China [J]. Atmospheric Environment, 2018, 185: 196-206. doi: 10.1016/j.atmosenv.2018.05.018
[6] LI Y Q, XU H M, HE K L, et al. Reactive oxygen species induced by personal exposure to fine particulate matter emitted from solid fuel combustion in rural Guanzhong Basin, northwestern China [J]. Air Quality, Atmosphere & Health, 2019, 12(11): 1323-1333.
[7] LI Y Q, XU H M, WANG J H, et al. Personal exposure to PM2.5-bound organic species from domestic solid fuel combustion in rural Guanzhong Basin, China: Characteristics and health implication [J]. Chemosphere, 2019, 227: 53-62. doi: 10.1016/j.chemosphere.2019.04.010
[8] SUN J, SHEN Z X, CAO J J, et al. Particulate matters emitted from maize straw burning for winter heating in rural areas in Guanzhong Plain, China: Current emission and future reduction [J]. Atmospheric Research, 2017, 184: 66-76. doi: 10.1016/j.atmosres.2016.10.006
[9] SIMONEIT B R T, ELIAS V O, KOBAYASHI M, et al. Sugars-dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter [J]. Environmental Science & Technology, 2004, 38(22): 5939-5949.
[10] SULLIVAN A P, HOLDEN A S, PATTERSON L A, et al. A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient PM2.5 organic carbon [J]. Journal of Geophysical Research:Atmospheres, 2008, 113(D22): D22302. doi: 10.1029/2008JD010216
[11] MIKUŠKA P, KUBÁTKOVÁ N, KŘŮMAL K, et al. Seasonal variability of monosaccharide anhydrides, resin acids, methoxyphenols and saccharides in PM2.5 in Brno, the Czech Republic [J]. Atmospheric Pollution Research, 2017, 8(3): 576-586. doi: 10.1016/j.apr.2016.12.018
[12] 李丽娟, 温彦平, 彭林, 等. 太原市采暖季PM2.5中元素特征及重金属健康风险评价 [J]. 环境科学, 2014, 35(12): 4431-4438. LI L J, WEN Y P, PENG L, et al. Characteristic of elements in PM2.5 and health risk assessment of heavy metals during heating season in Taiyuan [J]. Environmental Science, 2014, 35(12): 4431-4438(in Chinese).
[13] 范娇, 秦晓蕾, 薛晓丹, 等. 细颗粒物的免疫毒性研究进展 [J]. 环境化学, 2013, 32(2): 195-201. doi: 10.7524/j.issn.0254-6108.2013.02.003 FAN J, QIN X L, XUE X D, et al. Research progress on the immunotoxicity of fine particulate matters [J]. Environmental Chemistry, 2013, 32(2): 195-201(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.02.003
[14] ZHANG F Y, LI L P, KRAFFT T, et al. Study on the association between ambient air pollution and daily cardiovascular and respiratory mortality in an urban district of Beijing [J]. International Journal of Environmental Research and Public Health, 2011, 8(6): 2109-2123. doi: 10.3390/ijerph8062109
[15] XU H M, CAO J J, CHOW J C, et al. Inter-annual variability of wintertime PM2.5 chemical composition in Xi'an, China: Evidences of changing source emissions [J]. Science of the Total Environment, 2016, 545/546: 546-555. doi: 10.1016/j.scitotenv.2015.12.070
[16] SUN J, SHEN Z X, ZHANG Y, et al. Effects of biomass briquetting and carbonization on PM2.5 emission from residential burning in Guanzhong Plain, China [J]. Fuel, 2019, 244: 379-387. doi: 10.1016/j.fuel.2019.02.031
[17] ENGLING G, CARRICO C M, KREIDENWEIS S M, et al. Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection [J]. Atmospheric Environment, 2006, 40(2): 299-311.
[18] 陶俊, 柴发合, 朱李华, 等. 2009年春季成都城区碳气溶胶污染特征及其来源初探 [J]. 环境科学学报, 2011, 31(12): 2756-2761. TAO J, CHAI F H, ZHU L H, et al. Characteristics and sources of carbonaceous aerosol in the urban Chengdu during spring of 2009 [J]. Acta Scientiae Circumstantiae, 2011, 31(12): 2756-2761(in Chinese).
[19] ENGLING G, CARRICO C M, KREIDENWEIS S M, et al. Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection [J]. Atmospheric Environment, 2006, 40: 299-311. doi: 10.1016/j.atmosenv.2005.12.069
[20] 黄绪, 郭云霞, 刘剑斌, 等. 柳州大气PM2.5中糖类物质的分布特征与指示意义 [J]. 中国环境科学, 2017, 37(3): 838-843. HUANG X, GUO Y X, LIU J B, et al. The distribution characteristics and implications of carbohydrates in the PM2.5 of Liuzhou [J]. China Environmental Science, 2017, 37(3): 838-843(in Chinese).
[21] 赵起越, 赵红帅, 刘保献, 等. 大气颗粒物中左旋葡聚糖及其异构体的质谱分析 [J]. 分析仪器, 2014(6): 1-7. doi: 10.3969/j.issn.1001-232x.2014.06.001 ZHAO Q Y, ZHAO H S, LIU B X, et al. Analysis of levoglucosan and its isomers in atmospheric particulates by mass spectrometry [J]. Analytical Instrumentation, 2014(6): 1-7(in Chinese). doi: 10.3969/j.issn.1001-232x.2014.06.001
[22] XU H M, HO S S H, CAO J J, et al. A 10-year observation of PM 2.5 -bound nickel in Xi’an, China: Effects of source control on its trend and associated health risks [J]. Scientific Reports, 2017, 7: 41132. doi: 10.1038/srep41132
[23] XU H M, SUN R Y, CAO J J, et al. Mercury stable isotope compositions of Chinese urban fine particulates in winter haze days: Implications for Hg sources and transformations [J]. Chemical Geology, 2019, 504: 267-275. doi: 10.1016/j.chemgeo.2018.11.018
[24] CHOUDHARY V, RAJPUT P, RAJEEV P, et al. Synergistic effect in absorption properties of brown carbon and elemental carbon over IGP during weak south-west monsoon [J]. Aerosol Science and Engineering, 2017, 1(3): 138-149. doi: 10.1007/s41810-017-0013-1
[25] PIO C A, LEGRAND M, ALVES C A, et al. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period [J]. Atmospheric Environment, 2008, 42(32): 7530-7543. doi: 10.1016/j.atmosenv.2008.05.032
[26] YU J T, YAN C Q, LIU Y, et al. Potassium: A tracer for biomass burning in Beijing? [J]. Aerosol and Air Quality Research, 2018, 18(9): 2447-2459. doi: 10.4209/aaqr.2017.11.0536
[27] RAJPUT P, SARIN M M, SHARMA D, et al. Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: Impact on mass absorption efficiency of elemental carbon [J]. Environmental Science. Processes & Impacts, 2014, 16(10): 2371-2379.
[28] RAHMAN M M, BEGUM B A, HOPKE P K, et al. Assessing the PM2.5 impact of biomass combustion in megacity Dhaka, Bangladesh [J]. Environmental Pollution, 2020, 264: 114798. doi: 10.1016/j.envpol.2020.114798
[29] PERERA F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist [J]. International Journal of Environmental Research and Public Health, 2017, 15(1): 16. doi: 10.3390/ijerph15010016
[30] PERRAUD V, HORNE J R, MARTINEZ A S, et al. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions [J]. PNAS, 2015, 112(44): 13514-13519. doi: 10.1073/pnas.1510743112
[31] 邹丛阳, 蒋妮姗, 李兆堃. 基于PCA模型的苏州市古城区PM2.5来源解析 [J]. 山东农业大学学报(自然科学版), 2019, 50(1): 70-74. ZOU C Y, JIANG N S, LI Z K. PM2.5 source apportionment of historic district using principal component analysis in Suzhou city [J]. Journal of Shandong Agricultural University (Natural Science Edition), 2019, 50(1): 70-74(in Chinese).
[32] 刘新会, 牛军峰, 史江红. 环境与健康[M]. 北京: 北京师范大学出版社, 2009. LIU X H, NIU J F, SHI J H. Environment and health [M]. Beijing: Beijing Normal University Press, 2009(in Chinese).
[33] 郭晓爽. 北京市东北部典型区域PM2.5中重金属消解方法及污染特征研究[D]. 南昌: 江西农业大学, 2014, 47. GUO X S. Digestion method and pollution characteristics of heavy metals of the PM2.5 in typical northeast Beijing[D]. Nanchang: Jiangxi Agricultural University, 2014(in Chinese).
[34] 庄马展. 厦门大气PM2.5中元素特征及重金属健康风险评价 [J]. 环境化学, 2016, 35(8): 1723-1732. doi: 10.7524/j.issn.0254-6108.2016.08.2016032803 ZHUANG M Z. Characteristic of elements in PM2.5 and health risk assessment of heavy metals at Xiamen [J]. Environmental Chemistry, 2016, 35(8): 1723-1732(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.08.2016032803
[35] 李友平, 刘慧芳, 周洪, 等. 成都市PM2.5中有毒重金属污染特征及健康风险评价 [J]. 中国环境科学, 2015, 35(7): 2225-2232. doi: 10.3969/j.issn.1000-6923.2015.07.052 LI Y P, LIU H F, ZHOU H, et al. Contamination characteristics and health risk assessment of toxic heavy metals in PM2.5 in Chengdu [J]. China Environmental Science, 2015, 35(7): 2225-2232(in Chinese). doi: 10.3969/j.issn.1000-6923.2015.07.052
[36] 闫广轩, 张朴真, 王晨, 等. 郑州市采暖期与非采暖期PM2.5中重金属来源及潜在健康风险评价 [J]. 环境科学学报, 2019, 39(8): 2811-2820. YAN G X, ZHANG P Z, WANG C, et al. Source apportionment and health risk assessment of heavy metals of PM2.5 in heating and non-heating period in Zhengzhou [J]. Acta Scientiae Circumstantiae, 2019, 39(8): 2811-2820(in Chinese).
[37] 李曼, 仲勉, 荆亮, 等. 上海PM2.5中糖类化合物的组成及来源分析 [J]. 上海大学学报(自然科学版), 2013, 19(4): 387-392. LI M, ZHONG M, JING L, et al. Concentrations and sources of saccharides in PM2.5 in Shanghai [J]. Journal of Shanghai University (Natural Science), 2013, 19(4): 387-392(in Chinese).
[38] 仲勉. 上海大气颗粒物中极性有机物的组成特征、粒径分布和来源解析[D]. 上海: 上海大学, 2014, 92. ZHONG M. Chemical composition, size distribution and sources of polar organic compounds in aerosols in Shanghai[D]. Shanghai: Shanghai University, 2014(in Chinese).
[39] 李宏姣. CAREBEIJING-NCP观测期间北京市典型城区大气细粒子中有机化合物的污染特征[D]. 长春: 吉林大学, 2015. LI H J. Pollution characteristics of organic compounds in PM2.5 during2013CAREBEUING-NCP campaign in a typical urban area of Beijing[D]. Changchun: Jilin University, 2015(in Chinese).
[40] RYBICKI M, MARYNOWSKI L, SIMONEIT B R T. Composition of organic compounds from low-temperature burning of lignite and their application as tracers in ambient air [J]. Chemosphere, 2020, 249: 126087. doi: 10.1016/j.chemosphere.2020.126087
[41] KUO L J, LOUCHOUARN P, HERBERT B E. Influence of combustion conditions on yields of solvent-extractable anhydrosugars and lignin phenols in chars: Implications for characterizations of biomass combustion residues [J]. Chemosphere, 2011, 85(5): 797-805. doi: 10.1016/j.chemosphere.2011.06.074
[42] SIMONEIT B R T. Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign [J]. Journal of Geophysical Research Atmospheres, 2004, 109(D19): D19S10.
[43] MEDEIROS P M, CONTE M H, WEBER J C, et al. Sugars as source indicators of biogenic organic carbon in aerosols collected above the Howland Experimental Forest, Maine [J]. Atmospheric Environment, 2006, 40(9): 1694-1705. doi: 10.1016/j.atmosenv.2005.11.001
[44] 梁林林, Guenter Engling, 段凤魁, 等. 北京市大气气溶胶中糖类化合物的组成及来源 [J]. 环境科学, 2015, 36(11): 3935-3942. LIANG L L, ENGLING G, DUAN F K, et al. Composition and source apportionments of saccharides in atmospheric particulate matter in Beijing [J]. Environmental Science, 2015, 36(11): 3935-3942(in Chinese).
[45] 王鑫彤, 鞠法帅, 韩德文, 等. 大气颗粒物中生物质燃烧示踪化合物的研究进展 [J]. 环境化学, 2015, 34(10): 1885-1894. doi: 10.7524/j.issn.0254-6108.2015.10.2015040704 WANG X T, JU F S, HAN D W, et al. Research progress on the organic tracers of biomass burning in atmospheric aerosols [J]. Environmental Chemistry, 2015, 34(10): 1885-1894(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.10.2015040704
[46] SANG X F, ZHANG Z S, CHAN C, et al. Source categories and contribution of biomass smoke to organic aerosol over the southeastern Tibetan Plateau [J]. Atmospheric Environment, 2013, 78: 113-123. doi: 10.1016/j.atmosenv.2012.12.012
[47] JUNG J, LEE S, KIM H, et al. Quantitative determination of the biomass-burning contribution to atmospheric carbonaceous aerosols in Daejeon, Korea, during the rice-harvest period [J]. Atmospheric Environment, 2014, 89: 642-650. doi: 10.1016/j.atmosenv.2014.03.010
[48] FUJII Y, IRIANA W, ODA M, et al. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia [J]. Atmospheric Environment, 2014, 87: 164-169. doi: 10.1016/j.atmosenv.2014.01.037
[49] 许悦, 王可, 刘雪梅, 等. 室内外PM2.5中金属元素的污染特征及来源 [J]. 中国环境科学, 2018, 38(4): 1257-1264. XU Y, WANG K, LIU X M, et al. Pollution characteristics and sources of metal elements in indoor and outdoor PM2.5 [J]. China Environmental Science, 2018, 38(4): 1257-1264(in Chinese).
[50] 杨怀金, 杨德容, 叶芝祥, 等. 成都西南郊区春季PM2.5中元素特征及重金属潜在生态风险评价 [J]. 环境科学, 2016, 37(12): 4490-4503. YANG H J, YANG D R, YE Z X, et al. Characteristics of elements and potential ecological risk assessment of heavy metals in PM2.5 at the southwest suburb of Chengdu in spring [J]. Environmental Science, 2016, 37(12): 4490-4503(in Chinese).
[51] 杨毅红, 贾燕, 卞国建, 等. 珠海市郊区大气PM2.5中元素特征及重金属健康风险评价 [J]. 环境科学, 2019, 40(4): 1553-1561. YANG Y H, JIA Y, BIAN G J, et al. Elemental characteristics and health risk assessment of heavy metals in atmospheric PM2.5 in a suburb of Zhuhai city [J]. Environmental Science, 2019, 40(4): 1553-1561(in Chinese).
[52] 闫广轩, 雷豪杰, 张靖雯, 等. 新乡冬季PM2.5中金属元素与水溶性离子年际变化及其来源解析 [J]. 环境科学, 2019, 40(3): 1071-1081. YAN G X, LEI H J, ZHANG J W, et al. Interannual variation of metal elements and water-soluble ions in PM2.5 during wintertime in Xinxiang and their source apportionment [J]. Environmental Science, 2019, 40(3): 1071-1081(in Chinese).
[53] HAN J K, YU D X, WU J Q, et al. Co-firing raw and torrefied rice husk with a high-Na/Ca/Cl coal: Impacts on fine particulates emission and elemental partitioning [J]. Fuel, 2021, 292: 120327. doi: 10.1016/j.fuel.2021.120327
[54] YANG W, PUDASAINEE D, GUPTA R, et al. An overview of inorganic particulate matter emission from coal/biomass/MSW combustion: Sampling and measurement, formation, distribution, inorganic composition and influencing factors [J]. Fuel Processing Technology, 2021, 213: 106657. doi: 10.1016/j.fuproc.2020.106657
[55] 李如忠, 周爱佳, 童芳, 等. 合肥市城区地表灰尘重金属分布特征及环境健康风险评价 [J]. 环境科学, 2011, 32(9): 2661-2668. LI R Z, ZHOU A J, TONG F, et al. Distribution of metals in urban dusts of Hefei and health risk assessment [J]. Environmental Science, 2011, 32(9): 2661-2668(in Chinese).
[56] 刘伟军, 张书华, 王永武, 等. 生物质型煤燃烧热强度规律的研究 [J]. 动力工程, 2003, 23(2): 2342-2345. LIU W J, ZHANG S H, WANG Y W, et al. Research on regularity of practical combustion capacity for bio-coal [J]. Power Engineering, 2003, 23(2): 2342-2345(in Chinese).
[57] 于平, 孙家仁, 张烃, 等. 保定市室外环境大气PM2.5中重金属的健康风险及PM2.5来源分析 [J]. 现代预防医学, 2019, 46(16): 2914-2920. YU P, SUN J R, ZHANG T, et al. Health risks of heavy metals in atmospheric PM2.5 in outdoor environment of Baoding and analysis of PM2.5 sources [J]. Modern Preventive Medicine, 2019, 46(16): 2914-2920(in Chinese).
[58] THURSTON G D, ITO K, LALL R. A source apportionment of US fine particulate matter air pollution [J]. Atmospheric Environment, 2011, 45(24): 3924-3936. doi: 10.1016/j.atmosenv.2011.04.070
[59] HOPKE P K, ITO K, MAR T, et al. PM source apportionment and health effects: 1. Intercomparison of source apportionment results [J]. Journal of Exposure Science & Environmental Epidemiology, 2006, 16(3): 275-286.