[1] |
SAMSAMI S, MOHAMADI M, SARRAFZADEHA M H, et al. Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives[J]. Process Safety and Environmental Protection, 2020, 143: 138 − 163. doi: 10.1016/j.psep.2020.05.034
|
[2] |
中国环境监测总站. 2019年中国环境统计年报[N]. 2021-9-24.
|
[3] |
徐寿昌. 有机化学[M]. 北京: 高等教育出版社, 1992: 376-377.
|
[4] |
SHANG Y N, XU X, GAO B Y, et al. Single-atom catalysis in advanced oxidation processes for environmental remediation[J]. Chemical Society Reviews, 2021, 50: 5281 − 5322. doi: 10.1039/D0CS01032D
|
[5] |
ASGHAR A, ABDUL RAMAN A A, WAN D, et al. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review[J]. Journal of Cleaner Production, 2015, 87: 826 − 838. doi: 10.1016/j.jclepro.2014.09.010
|
[6] |
WANG H, LI X, HAO Z, et al. Transformation of dissolved organic matter in concentrated leachate from nanofiltration during ozone based oxidation processes (O3, O3/H2O2 and O3/UV)[J]. Journal of Environmental Management, 2017, 191: 244 − 251. doi: 10.1016/j.jenvman.2017.01.021
|
[7] |
REHMAN F, SAYED M, KHAN J A, et al. Oxidative removal of brilliant green by UV/S2O82‒, UV/HSO5‒and UV/H2O2 processes in aqueous media: a comparative study[J]. Journal of Hazardous Materials, 2018, 357: 506 − 514. doi: 10.1016/j.jhazmat.2018.06.012
|
[8] |
FU P, FENG J, YANG H, et al. Degradation of sodium n-butyl xanthate by vacuum UV-ozone (VUV/O3) in comparison with ozone and VUV photolysis[J]. Process Safety and Environmental Protection, 2016, 102: 64 − 70. doi: 10.1016/j.psep.2016.02.010
|
[9] |
NIDHEESH P V, ZHOU M, OTURAN M A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes[J]. Chemosphere, 2018, 197: 210 − 227. doi: 10.1016/j.chemosphere.2017.12.195
|
[10] |
EREN Z. Ultrasound as a basic and auxiliary process for dye remediation: a review[J]. Journal of Environmental Management, 2012, 104: 127 − 141.
|
[11] |
GOGATE P R, SIVAKUMAR M, PANDIT A B. Destruction of Rhodamine B using novel sonochemical reactor with capacity of 7.51[J]. Separation and Purification Technology, 2004, 34: 13 − 24. doi: 10.1016/S1383-5866(03)00170-9
|
[12] |
WANG Q, LEMLEY A T. Degradation of reactive brilliant red in aqueous solution by ultrasonic cavitation[J]. Ultrasonics Sonochemistry, 2008, 15: 43 − 48. doi: 10.1016/j.ultsonch.2007.01.008
|
[13] |
WANG W K, CHEN G H, GUO W L, et al. Sonochemistry degradation kinetics of methyl violet in aqueous solutions[J]. Molecules, 2003, 8: 40 − 44. doi: 10.3390/80100040
|
[14] |
HARICHANDRAN G, PRASAD S. SonoFenton degradation of an azo dye, Direct Red[J]. Ultrasonics Sonochemistry, 2016, 9: 178 − 185.
|
[15] |
ZHANG H, FU H, ZHANG D. Degradation of C. I. Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process[J]. Journal of Hazardous Materials, 2009, 172: 654 − 660. doi: 10.1016/j.jhazmat.2009.07.047
|
[16] |
MEROUANI S, HAMDAOUI O, SAOUDI F, et al. Influence of bicarbonate and carbonate ions on sonochemical degradation of Rhodamine B in aqueous phase[J]. Journal of Hazardous Materials, 2010, 75: 593 − 599.
|
[17] |
SIDDIQUE M, FAROOQ R, PRICE G J. Synergistic effects of combining ultrasound with the Fenton process in the degradation of Reactive Blue 19[J]. Ultrasonics Sonochemistry, 2014, 21: 1206 − 1212. doi: 10.1016/j.ultsonch.2013.12.016
|
[18] |
BOKHALE N B, BOMBLE S D, DALBHANJAN R R, et al. Sonocatalytic and sonophotocatalytic degradation of rhodamine 6G containing wastewaters[J]. Ultrasonics Sonochemistry, 2014, 21: 1797 − 1804. doi: 10.1016/j.ultsonch.2014.03.022
|
[19] |
INCE N H, TEZCANLI-GÜYER G. Impacts of pH and molecular structure on ultrasonic degradation of azo dyes[J]. Ultrasonics, 2004, 42: 591 − 596. doi: 10.1016/j.ultras.2004.01.097
|
[20] |
MISHRA K P, GOGATE P R. Intensification of degradation of Rhodamine B using hydrodynamic cavitation in the presence of additives[J]. Separation and Purification Technology, 2010, 75: 385 − 391. doi: 10.1016/j.seppur.2010.09.008
|
[21] |
WANG L, ZHU L, LUO W, et al. Drastically enhanced ultrasonic decolorization of methyl orange by adding CCl4[J]. Ultrasonics Sonochemistry, 2007, 14: 253 − 258. doi: 10.1016/j.ultsonch.2006.05.004
|
[22] |
SAHARAN V K, PANDIT A B, SATISH KUMAR P S, et al. Hydrodynamic cavitation as an advanced oxidation technique for the degradation of acid red 88 dye[J]. Industrial & Engineering Chemistry Research, 2012, 51: 1981 − 1989.
|
[23] |
RAJORIYA S, BARGOLE S, SAHARAN V K. Degradation of reactive blue 13 using hydrodynamic cavitation: effect of geometrical parameters and different oxidizing additives[J]. Ultrasonics Sonochemistry, 2017, 37: 192 − 202. doi: 10.1016/j.ultsonch.2017.01.005
|
[24] |
RAJORIYA S, BARGOLE S, SAHARAN V K. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: reaction mechanism and pathway[J]. Ultrasonics Sonochemistry, 2017, 34: 183 − 194. doi: 10.1016/j.ultsonch.2016.05.028
|
[25] |
张秀, 赵泽盟, 邵磊. O3/UV工艺处理罗丹明B染料废水的研究[J]. 现代化工, 2019, 39(1): 183 − 185.
|
[26] |
Shang N C, Chen Y H, Yang Y P. Ozonation of dyes and textile wastewater in a rotating packed bed[J]. Journal of Environmental Science and Health Part A, 2006, 41(10): 2299 − 2310. doi: 10.1080/10934520600873043
|
[27] |
邢天辰, 田力剑, 邵磊, 等. 旋转填充床中O3/Fenton工艺处理酸性黄23印染废水的研究[J]. 北京化工大学学报(自然科学版), 2016, 43(3): 14 − 19.
|
[28] |
ZHAO Z Y, SHAO L. Degradation of indigo carmine by coupling Fe(II)-activated sodium persulfate and ozone in a rotor-stator reactor[J]. Chemical Engineering and Processing, 2020, 148: 1077911 − 1077916.
|
[29] |
李鑫, 曾泽泉, 邵磊, 等. 旋转填充床中均相催化臭氧化处理酸性红B染料废水[J]. 化学反应工程与工艺, 2011, 27(1): 21 − 25+31. doi: 10.3969/j.issn.1001-7631.2011.01.005
|
[30] |
葛德明. 超重力法强化过硫酸盐体系处理染料废水[D]. 北京: 北京化工大学, 2015.
|
[31] |
CAI M, SU J, ZHU Y, et al. Decolorization of azo dyes Orange G using hydrodynamic cavitation coupled with heterogeneous Fenton process[J]. Ultrasonics Sonochemistry, 2016, 28: 302 − 310. doi: 10.1016/j.ultsonch.2015.08.001
|
[32] |
SAHARAN V K, BADVE M P, PANDIT A B. Degradation of Reactive Red 120 dye using hydrodynamic cavitation[J]. Chemical Engineering Journal, 2011, 178: 100 − 107. doi: 10.1016/j.cej.2011.10.018
|
[33] |
DANESHVAR N, SALARI D, KHATAEE A. Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2003, 157: 111 − 116. doi: 10.1016/S1010-6030(03)00015-7
|
[34] |
DANESHVAR N, SALARI D, KHATAEE A. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004, 162: 317 − 322. doi: 10.1016/S1010-6030(03)00378-2
|
[35] |
MODIRSHAHLA N, BEHNAJADY M, GHANBARY F. Decolorization and mineralization of CI Acid Yellow 23 by Fenton and photo-Fenton processes[J]. Dyes and Pigments, 2007, 73: 305 − 310. doi: 10.1016/j.dyepig.2006.01.002
|
[36] |
ZHANG X, HAO C, MA C, et al. Studied on sonocatalytic degradation of Rhodamine B in aqueous solution[J]. Ultrasonics Sonochemistry, 2019, 58: 104691 − 104701. doi: 10.1016/j.ultsonch.2019.104691
|
[37] |
BAI C P, XIONG X F, GONGW Q, et al. Removal of Rhodamine B by ozone-based advanced oxidation process[J]. Desalination, 2011, 278: 84 − 90. doi: 10.1016/j.desal.2011.05.009
|
[38] |
WILHELM P, STEPHAN D. Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2007, 85: 19 − 25.
|
[39] |
HOU M F, LIAO L, ZHANG W D, et al. Degradation of rhodamine B by Fe(0)-based Fenton process with H2O2[J]. Chemosphere, 2011, 83: 1279 − 1283. doi: 10.1016/j.chemosphere.2011.03.005
|
[40] |
CHEN Q, JI F, LIU T, et al. Synergistic effect of bifunctional Co-TiO2 catalyst on degradation of Rhodamine B: Fenton-photo hybrid process[J]. Chemical Engineering Journal, 2013, 229: 57 − 65. doi: 10.1016/j.cej.2013.04.024
|
[41] |
GAO Y, WANG Y, ZHANG H. Removal of Rhodamine B with Fe-supported bentonite as heterogeneous photo-Fenton catalyst under visible irradiation[J]. Applied Catalysis B:Environmental, 2015, 178: 29 − 36. doi: 10.1016/j.apcatb.2014.11.005
|