[1] LI L, PAN D, LI B, et al. Patterns and challenges in the copper industry in China[J]. Resources, Conservation and Recycling, 2017, 127: 1 − 7. doi: 10.1016/j.resconrec.2017.07.046
[2] WANG C, ZUO L, HU P, et al. Evaluation and simulation analysis of China’s copper security evolution trajectory[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(8): 2465 − 2474. doi: 10.1016/S1003-6326(13)62756-9
[3] 王威. 全球铜消费格局[J]. 国土资源情报, 2014(11): 26 − 29. doi: 10.3969/j.issn.1674-3709.2014.11.005
[4] NIKOLIĆ I P, MILO ŠEVIĆ I M, MILIJIĆ N N, et al. Cleaner production and technical effectiveness: Multi-criteria analysis of copper smelting facilities[J]. Journal of Cleaner Production, 2019, 215: 423 − 432. doi: 10.1016/j.jclepro.2019.01.109
[5] 高慧敏. 铜冶炼行业固废和危废的回收与利用研究[J]. 科技经济导刊, 2018, 26(18): 120.
[6] 金尚勇, 李永鹏, 陈虎. 铜冶炼危险废物环境管理问题探讨[J]. 中国资源综合利用, 2019, 37(3): 142 − 143.
[7] 中华人民共和国生态环境部. 国家危险废物名录(2021年版)[EB/OL]. (2020-11-27)[2021-02-28]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk02/202011/t20201127_810202.html.
[8] 中华人民共和国司法部. 中华人民共和国固体废物污染环境防治法[EB/OL]. (2020-05-06)[2021-02-28]. http://www.moj.gov.cn/Department/content/2020-05/06/592_3248103.html.
[9] 李鹏飞, 杨丹辉, 渠慎宁, 等. 稀有矿产资源的战略性评估——基于战略性新兴产业发展的视角[J]. 中国工业经济, 2014(7): 44 − 57.
[10] 谢祥添. 铜冶炼过程多型固废整体回收新技术[J]. 有色金属(冶炼部分), 2020(2): 23 − 26.
[11] JAROŠÍKOVÁ A, ETTLER V, MIHALJEVIČ M, et al. Characterization and pH-dependent environmental stability of arsenic trioxide-containing copper smelter flue dust[J]. Journal of Environmental Management, 2018, 209: 71 − 80.
[12] 郑春到, 林东和. 闪速熔炼系统As、Sb、Bi、Pb的走向分布[J]. 中国有色冶金, 2015, 44(3): 15 − 18. doi: 10.3969/j.issn.1672-6103.2015.03.005
[13] 王治永. 富氧侧吹铜冶炼冰铜品位变化对杂质走向的影响[J]. 有色矿冶, 2018, 34(2): 32 − 34. doi: 10.3969/j.issn.1007-967X.2018.02.008
[14] 刘智明. 铜冶炼烟尘综合回收工艺浅析及建议[J]. 中国有色冶金, 2015, 44(5): 44 − 48. doi: 10.3969/j.issn.1672-6103.2015.05.013
[15] 程利振, 许歆. 铜造锍熔炼杂质元素分布及回收利用研究进展[J]. 有色金属材料与工程, 2016, 37(3): 103 − 109.
[16] SCHRIJVERS D, HOOL A, BLENGINI G A, et al. A review of methods and data to determine raw material criticality[J]. Resources, Conservation and Recycling, 2020, 155: 104617. doi: 10.1016/j.resconrec.2019.104617
[17] SUN Z, XIAO Y, AGTERHUIS H, et al. Recycling of metals from urban mines – a strategic evaluation[J]. Journal of Cleaner Production, 2016, 112: 2977 − 2987. doi: 10.1016/j.jclepro.2015.10.116
[18] ZUO L, WANG C, CORDER G D. Strategic evaluation of recycling high-tech metals from urban mines in China: An emerging industrial perspective[J]. Journal of Cleaner Production, 2019, 208: 697 − 708. doi: 10.1016/j.jclepro.2018.10.030
[19] VILLALBA G, SEGARRA M, FERNÁNDEZ A I, et al. A proposal for quantifying the recyclability of materials[J]. Resources, Conservation and Recycling, 2002, 37(1): 39 − 53. doi: 10.1016/S0921-3449(02)00056-3
[20] FANG S, YAN W, CAO H, et al. Evaluation on end-of-life LEDs by understanding the criticality and recyclability for metals recycling[J]. Journal of Cleaner Production, 2018, 182: 624 − 633. doi: 10.1016/j.jclepro.2018.01.260
[21] 曾现来. 典型电子废物部件中有色金属回收机理及技术研究[D]. 北京: 清华大学, 2014.
[22] ZENG X, LI J. Measuring the recyclability of e-waste: an innovative method and its implications[J]. Journal of Cleaner Production, 2016, 131: 156 − 162. doi: 10.1016/j.jclepro.2016.05.055
[23] British Geological Survey, Bureau de Recherches Géologiques et Minières, Deloitte Sustainability, et al. Study on the review of the list of critical raw materials: final report. [R]. Publications Office of the European Union, 2017.
[24] KIM J, LEE J, KIM B, et al. Raw material criticality assessment with weighted indicators: An application of fuzzy analytic hierarchy process[J]. Resources Policy, 2019, 60: 225 − 233. doi: 10.1016/j.resourpol.2019.01.005
[25] CALVO G, VALERO A, VALERO A. Thermodynamic approach to evaluate the criticality of raw materials and its application through a material flow analysis in Europe[J]. Journal of Industrial Ecology, 2018, 22(4): 839 − 852. doi: 10.1111/jiec.12624
[26] BARANZELLI C, BLAGOEVA D, BLENGINI G A, et al. Methodology for establishing the EU list of critical raw materials: guidelines. [M]. European Union, 2017.
[27] 廖亚龙, 叶朝, 王祎洋, 等. 铜冶炼渣资源化利用研究进展[J]. 化工进展, 2017, 36(8): 3066 − 3073.
[28] 刘金生, 姜平国, 肖义钰, 等. 从铜渣中回收铁的研究现状及其新方法的提出[J]. 有色金属科学与工程, 2019, 10(2): 19 − 24.
[29] 邵厥年, 陶维屏. 矿产资源工业要求手册[M]. 北京: 地质出版社, 2010.
[30] SHANNON C. E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379 − 423. doi: 10.1002/j.1538-7305.1948.tb01338.x
[31] RECHBERGER H. An entropy based method to evaluate hazardous inorganic substance balances of waste treatment systems[J]. Waste Management & Research, 2001, 19(2): 186 − 192.
[32] DAHMUS J B, GUTOWSKI T G. What gets recycled: An information theory based model for product recycling[J]. Environmental Science & Technology, 2007, 41(21): 7543 − 7550.
[33] 李学鹏. 从高砷铜烟尘中综合回收有价金属的应用基础研究[D]. 昆明: 昆明理工大学, 2018.
[34] 赵晋, 陈春丽. 铜冶炼企业固废产生节点分析及处置措施建议[J]. 有色冶金设计与研究, 2013, 34(3): 75 − 78. doi: 10.3969/j.issn.1004-4345.2013.03.023