[1] |
中华人民共和国国家统计局. 中国统计年鉴2020[M]. 北京: 中国统计出版社, 2020.
|
[2] |
刘敬勇, 孙水裕. 城市污泥焚烧过程中重金属形态与分布的热力学平衡分析[J]. 中国有色金属学报, 2010, 20(8): 1645-1655.
|
[3] |
CUCCHIELLA F, D’ADAMO I, GASTALDI M. Sustainable waste management: Waste to energy plant as an alternative to landfill[J]. Energy Conversion and Management, 2017, 131: 18-31. doi: 10.1016/j.enconman.2016.11.012
|
[4] |
杨光, 包兵, 丁文川, 等. 有机螯合剂与磷酸盐联合稳定垃圾焚烧飞灰中重金属的作用机理[J]. 环境工程学报, 2019, 13(8): 1967-1976. doi: 10.12030/j.cjee.201811158
|
[5] |
TANG J, STEENARI B M. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd[J]. Waste Management, 2015, 48(3): 315-322.
|
[6] |
蓝际荣, 孙燕, 潘滢, 等. 球磨与助剂强化选择性回收电解锰渣中的锰[J]. 中国有色金属学报, 2019, 29(8): 1749-1755.
|
[7] |
郑鹏, 刘建国, 刘锋, 等. 垃圾焚烧飞灰磷酸洗涤对重金属的固定效应研究[J]. 环境工程学报, 2007, 1(1): 121-125. doi: 10.3969/j.issn.1673-9108.2007.01.031
|
[8] |
汪莉, 柴立元, 闵小波, 等. 重金属废渣的硫固定稳定化[J]. 中国有色金属学报, 2008, 18(11): 2105-2110. doi: 10.3321/j.issn:1004-0609.2008.11.026
|
[9] |
ZACCO A, BORGESE L, GIANONCELLI A, et al. Review of fly ash inertisation treatments and recycling[J]. Environmental Chemistry Letters, 2014, 12(1): 153-175. doi: 10.1007/s10311-014-0454-6
|
[10] |
李建陶, 曾鸣, 杜兵, 等. 垃圾焚烧飞灰药剂稳定化矿物学特性[J]. 中国环境科学, 2017, 37(11): 4188-4194. doi: 10.3969/j.issn.1000-6923.2017.11.023
|
[11] |
刘富强, 秘田静, 钟瑞琳. 烧结条件对垃圾焚烧飞灰中重金属固定率的影响[J]. 环境科学与技术, 2013, 36(5): 47-50. doi: 10.3969/j.issn.1003-6504.2013.05.010
|
[12] |
ZHANG M, EL-KORCHI T, ZHANG G P, et al. Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mud-fly ash based geopolymers[J]. Fuel, 2014, 134: 315-325. doi: 10.1016/j.fuel.2014.05.058
|
[13] |
WANG Y G, HAN F L, MU J Q. Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers[J]. Construction and Building Materials, 2018, 160: 818-827. doi: 10.1016/j.conbuildmat.2017.12.006
|
[14] |
WANG X X, LI A M, ZHANG Z K. The effects of water washing on cement-based stabilization of MWSI fly ash[J]. Procedia Environmental Sciences, 2016, 31: 440-446. doi: 10.1016/j.proenv.2016.02.095
|
[15] |
王震. 重金属污染物的化学稳定化研究[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2019
|
[16] |
朱芬芬, 柳晓燕, 韩媚玲, 等. 烧结升温方式及气氛对水洗焚烧飞灰晶体演变的影响[J]. 中国环境科学, 2019, 39(10): 4212-4220. doi: 10.3969/j.issn.1000-6923.2019.10.022
|
[17] |
ZHAN X, WANG L, HU C, et al. Co-disposal of MSWI fly ash and electrolytic manganese residue based on geopolymeric system[J]. Waste Management, 2018, 82: 62-70. doi: 10.1016/j.wasman.2018.10.014
|
[18] |
LI Y C, MIN X B, KE Y, et al. Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation[J]. Waste Management, 2019, 83: 202-208. doi: 10.1016/j.wasman.2018.11.019
|
[19] |
孙杨雨, 焦春磊, 谭笑, 等. 生活垃圾焚烧飞灰中重金属的稳定化及其机理研究[J]. 中国科学:化学, 2016, 46(7): 716-724.
|
[20] |
BIE R S, CHEN P, SONG X F, et al. Characteristics of municipal solid waste incineration fly ash with cement solidification treatment[J]. Journal of the Energy Institute, 2016, 89(4): 704-712. doi: 10.1016/j.joei.2015.04.006
|
[21] |
MANGIALARDI T, PAOLINI A E, POLETTINI A, et al. Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices[J]. Journal of Hazardous Materials, 1999, 70(1/2): 53-70.
|
[22] |
唐强, 陈辉, 尹立新, 等. 生活垃圾焚烧飞灰固化体力学及重金属浸出特性[J]. 环境工程学报, 2017, 35(4): 111-114,159.
|
[23] |
WANG B M, FAN C C. Hydration behavior and immobilization mechanism of MgO-SiO2-H2O cementitious system blended with MSWI fly ash[J]. Chemosphere, 2020, 250: 126269. doi: 10.1016/j.chemosphere.2020.126269
|
[24] |
中华人民共和国生态环境部, 中华人民共和国国家质量监督检验检疫总局. 生活垃圾填埋场污染控制标准: GB 16889-2008[S]. 北京: 中国环境科学出版社, 2008.
|
[25] |
中华人民共和国住房和城乡建设部, 中华人民共和国国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081-2019[S]. 北京: 中国建筑工业出版社, 2019.
|
[26] |
中华人民共和国国家环境保护总局. 固体废物 浸出毒性浸出方法 醋酸缓冲溶液法: HJ/T 300-2007[S]. 北京: 中国环境科学出版社, 2007.
|
[27] |
中华人民共和国国家环境保护总局, 中华人民共和国国家质量监督检验检疫总局. 危险废物鉴别标准 浸出毒性鉴别: GB 5085.3-2007[S]. 北京: 中国环境科学出版社, 2007.
|
[28] |
LIU J, HU L, TANG L P, et al. Utilization of municipal solid waste incinerator (MSWI) fly ash with metkaolin for preparation of alkali-activated cementitious material[J]. Journal of Hazardous Materials, 2020, 402(4): 123451.
|
[29] |
林森, 孙仕勇, 申珂璇, 等. 电气石的环境功能属性及其复合功能材料应用研究[J]. 材料导报, 2017, 13(17): 1005-023.
|
[30] |
ERTL A, VERESHCHAGIN O S, GIESTER G, et al. Structural and chemical investigation of a zoned synthetic Cu-rich tourmaline[J]. Canadian Mineralogist, 2015, 53(2): 209-219. doi: 10.3749/canmin.1400078
|
[31] |
POULSEN S L, KOCABA V, LESAOUT G, et al. Improved quantification of alite and belite in anhydrous Portland cements by Si-29 MAS NMR: Effects of paramagnetic ions[J]. Solid State Nuclear Magnetic Resonance, 2009, 36(1): 32-44. doi: 10.1016/j.ssnmr.2009.05.001
|
[32] |
中华人民共和国住房和城乡建设部. 生活垃圾焚烧处理工程技术规范: CJJ 90-2002[S]. 北京: 中国建筑工业出版社, 2002.
|
[33] |
LONDON D. Formation of tourmaline-rich gem pockets in miarolitic pegmatites[J]. American Mineralogist, 1986, 71(3/4): 396-405.
|
[34] |
张洪臣. 电气石的高温热行为研究[D]. 天津: 河北工业大学, 2015.
|
[35] |
郝玉, 徐宏勇, 柏舸, 等. 垃圾焚烧飞灰中Cd、Pb、Zn的螯合稳定与水泥固化处理[J]. 环境工程学报, 2018, 12(8): 2357-2362. doi: 10.12030/j.cjee.201803036
|
[36] |
ONORI R, POLETTNI A, POMI A. Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends[J]. Waste Management, 2011, 31(2): 298-310. doi: 10.1016/j.wasman.2010.05.021
|