[1] |
戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020, 72(6): 30-34.
|
[2] |
WEI H, GAO B, REN J, et al. Coagulation/flocculation in dewatering of sludge: A review[J]. Water Research, 2018, 143(15): 608-631.
|
[3] |
林伟雄, 顾海奇, 武纯, 等. 响应面法优化化学沉淀螯合生物絮凝处理含镍废水[J]. 环境工程学报, 2021, 15(2): 493-500. doi: 10.12030/j.cjee.202005139
|
[4] |
ABU-ORF M, Muller C D, Park C, et al. Innovative Technologies to Reduce Water Content of Dewatered Municipal Residuals[J]. Journal of Residuals Science and Technology, 2004, 1(2): 83-91.
|
[5] |
YEN P S, CHEN L C, CHIEN C Y, et al. Network strength and dewaterability of flocculated activated sludge[J]. Water Research, 2002, 36(3): 0-550.
|
[6] |
AYOL A, DENTEL S K. Enzymatic treatment effects on dewaterability of anaerobically digested biosolids-II: laboratory characterizations of drainability and filterability[J]. Process Biochemistry, 2005, 40(7): 2435-2442. doi: 10.1016/j.procbio.2004.09.024
|
[7] |
DENTEL S K, Dursun D. Shear sensitivity of digested sludge: Comparison of methods and application in conditioning and dewatering[J]. Water Research, 2009, 43(18): 4617-4625. doi: 10.1016/j.watres.2009.07.015
|
[8] |
OERMECI B. Optimization of a full-scale dewatering operation based on the rheological characteristics of wastewater sludge[J]. Water Research, 2007, 41(6): 1243-1252. doi: 10.1016/j.watres.2006.12.043
|
[9] |
WANG Y L, DENTEL S K. The effect of high speed mixing and polymer dosing rates on the geometric and rheological characteristics of conditioned anaerobic digested sludge (ADS)[J]. Water Research, 2010, 44(20): 6041-6052. doi: 10.1016/j.watres.2010.07.068
|
[10] |
OLIVEIRA I, REED J P, ABU-ORF M, et al. The potential use of shear viscosity to monitor polymer conditioning of sewage sludge digestates[J]. Water Research, 2016, 105(15): 320-330.
|
[11] |
ESHTIAGHI N, MARKIS F, YAP S D, et al. Rheological characterisation of municipal sludge: A review[J]. Water Research, 2013, 47(15): 5493-5510. doi: 10.1016/j.watres.2013.07.001
|
[12] |
NIYA S, HOORFAR M. Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique – A review[J]. Journal of Power Sources, 2013, 240: 281-293. doi: 10.1016/j.jpowsour.2013.04.011
|
[13] |
KRUKIEWICZ K. Electrochemical impedance spectroscopy as a versatile tool for the characterization of neural tissue: a mini review[J]. Electrochemistry Communications, 2020, 116: 106742. doi: 10.1016/j.elecom.2020.106742
|
[14] |
HABTE B T, JIANG F. Effect of microstructure morphology on Li-ion battery graphite anode performance: Electrochemical impedance spectroscopy modeling and analysis[J]. Solid State Ionics, 2018, 314: 81-91. doi: 10.1016/j.ssi.2017.11.024
|
[15] |
NAVA O, MURRIETA-RICO F N, ME MARTINEZ-ROSAS, et al. Evaluation of electrochemical properties of zinc oxide based semiconductor nanoparticles biosynthesized with Mentha spicata for optoelectronic applications[J]. Materials Letters, 2020, 275: 128101. doi: 10.1016/j.matlet.2020.128101
|
[16] |
DIEUDE-FAUVEL E, BAUDEZ J C, COUSSOT P, et al. Correlation between electrical and rheological measurements on sewage sludge[J]. Practice and Technology, 2007. 2(1).
|
[17] |
SEGALEN C, DIEUDE-FAUVEL E, CLEMENT J, et al. Relationship between electrical and rheological properties of sewage sludge-Impact of temperature[J]. Water Research, 2015, 73(15): 1-8.
|
[18] |
SEGALEN C, DIEUDE-FAUVEL E, BAUDEZ J C. Electrical and rheological properties of sewage sludge-Impact of the solid content[J]. Water Research, 2015, 82(1): 25-36.
|
[19] |
DIEUDE-FAUVEL E, HERITIER P, CHANET M, et al. Modelling the rheological properties of sludge during anaerobic digestion in a batch reactor by using electrical measurements[J]. Water Research, 2014, 51(15): 104-112. doi: 10.1016/j.watres.2013.12.018
|
[20] |
李婷, 王毅力, 冯晶, 等. 活性污泥的理化性质与絮凝调理投药量的关系[J]. 环境科学, 2012, 33(3): 889-895.
|
[21] |
GREENBERG A E, Trussell R R, Clesceri L S, et al. Standard methods for the examination of water and wastewater: supplement to the sixteenth edition[J]. American Journal of Public Health and the Nations Health, 2005, 56(3): 387.
|
[22] |
ZHANG D X, WANG Y L, LI J, et al. Electrical impedance spectroscopy as a potential tool to investigate the structure and size of aggregates during water and wastewater treatment[J]. Journal of Colloid and Interface Science, 2022, 606: 500-509. doi: 10.1016/j.jcis.2021.08.038
|
[23] |
张达鑫. 适度氧化—原位絮凝调理中污泥介电谱分形原理构建及应用研究[D]. 北京: 北京林业大学, 2021.
|
[24] |
涂玉. 污泥调理中混凝剂对污泥脱水性能影响研究[D]. 南昌: 南昌大学, 2008.
|
[25] |
曾祥国. 剩余污泥调理优化及脱水性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
|
[26] |
李闯, 范颖芳, 李秋超. 基于电化学阻抗谱的偏高岭土水泥性能研究[J]. 建筑材料学报, 2020, 23(4): 755-762. doi: 10.3969/j.issn.1007-9629.2020.04.003
|
[27] |
CAO B D, ZHANG T, ZHANG W J, et al. Enhanced technology based for sewage sludge deep dewatering: A critical review[J]. Water Research, 2021, 189(1): 116650. doi: 10.1016/j.watres.2020.116650
|
[28] |
LI E R, WANG Y L, ZHANG D X, et al. Siderite/PMS conditioning-pressurized vertical electro-osmotic dewatering process for activated sludge volume reduction: evolution of protein secondary structure and typical amino acid in EPS[J]. Water Research, 2021: 117352.
|
[29] |
ZHANG D X, WANG Y L, GAO H Y, et al. Variations in macro and micro physicochemical properties of activated sludge under a moderate oxidation-in situ coagulation conditioning: relationship between molecular structure and dewaterability[J]. Water research, 2019, 155(15): 245-254. doi: 10.1016/j.watres.2019.02.047
|
[30] |
WU B R, NI B J, HORVAT K, et al. Occurrence state and molecular structure analysis of extracellular proteins with implications on the dewaterability of waste-activated sludge[J]. Environmental science and technology, 2017, 51(16): 9235-9243.
|
[31] |
ZHANG J S, LI N, DAI X H, et al. Enhanced dewaterability of sludge during anaerobic digestion with thermal hydrolysis pretreatment: new insights through structure evolution[J]. Water Research, 2018, 131(15): 177-185. doi: 10.1016/j.watres.2017.12.042
|
[32] |
肖衍繁, 李文斌. 物理化学: 第2版[M]. 天津大学出版社, 2004.
|
[33] |
PARK S H, HWANG J, PARK G S, et al. Modeling the electrical resistivity of polymer composites with segregated structures[J]. Nature communications, 2019, 10(1): 1-11. doi: 10.1038/s41467-018-07882-8
|
[34] |
KOPELMAN R. Fractal reaction kinetics[J]. Science, 1988, 241(4873): 1620-1626. doi: 10.1126/science.241.4873.1620
|