[1] 孙涛, 陆扣萍, 王海龙. 不同淋洗剂和淋洗条件下重金属污染土壤淋洗修复研究进展[J]. 浙江农林大学学报, 2015, 32(1): 140 − 149. doi: 10.11833/j.issn.2095-0756.2015.01.021
[2] WANG L, LI X, TSANG D C W, et al. Green remediation of Cd and Hg contaminated soil using humic acid modified montmorillonite: Immobilization performance under accelerated ageing conditions[J]. Journal of Hazardous Materials, 2020, 387: 122005. doi: 10.1016/j.jhazmat.2019.122005
[3] SHAN R, SHI Y, GU J, et al. Aqueous Cr(VI) removal by biochar derived from waste mangosteen shells: Role of pyrolysis and modification on its absorption process[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103885. doi: 10.1016/j.jece.2020.103885
[4] SHEN Z, ZHANG J, HOU D, et al. Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue[J]. Environment International, 2019, 122: 357 − 362. doi: 10.1016/j.envint.2018.11.045
[5] LI Y, WANG X, CAO M. Three-dimensional porous carbon frameworks derived from mangosteen peel waste as promising materials for CO2 capture and supercapacitors[J]. Journal of CO2 Utilization, 2018, 27: 204 − 216. doi: 10.1016/j.jcou.2018.07.019
[6] 谈梦仙, 洪孝挺, 吕向红. 山竹壳活性炭的制备与吸附性能研究[J]. 华南师范大学学报(自然科学版), 2016, 48(2): 46 − 51.
[7] 黄晓东, 刘明华, 林春香. 氨基硫脲改性山竹壳对Cd2+、Pb2+的吸附[J]. 环境科学与技术, 2012, 35(5): 24 − 27. doi: 10.3969/j.issn.1003-6504.2012.05.006
[8] 李章涛. 纳米零价铁改性沸石对土壤镉铅砷复合污染的钝化效果及相关机制研究[D]. 杭州: 浙江大学, 2020.
[9] 王贵胤. 生物可降解螯合剂对镉铅锌污染土壤修复机理及生态风险评估[D]. 雅安: 四川农业大学, 2019.
[10] 张朝阳, 彭平安, 宋建中, 等. 改进BCR法分析国家土壤标准物质中重金属化学形态[J]. 生态环境学报, 2012, 21(11): 1881 − 1884. doi: 10.3969/j.issn.1674-5906.2012.11.019
[11] 张文杰. 生物炭/铁酸锰复合材料固定土壤中铅镉的长期稳定性研究[D]. 包头: 内蒙古科技大学, 2020.
[12] CHEN Y, HUANG B, HUANG M, et al. On the preparation and characterization of activated carbon from mangosteen shell[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(5): 837 − 842. doi: 10.1016/j.jtice.2011.01.007
[13] ZEIN R, SUHAILI R, EARNESTLY F, et al. Removal of Pb(II), Cd(II) and Co(II) from aqueous solution using Garcinia mangostana L. fruit shell[J]. Journal of Hazardous Materials, 2010, 181(1): 52 − 56.
[14] VÁZQUEZ G, CALVO M, SONIA FREIRE M, et al. Chestnut shell as heavy metal adsorbent: Optimization study of lead, copper and zinc cations removal[J]. Journal of Hazardous Materials, 2009, 172(2-3): 1402 − 1414. doi: 10.1016/j.jhazmat.2009.08.006
[15] BATOOL F, IQBAL S, AKBAR J. Impact of metal ionic characteristics on adsorption potential of Ficus carica leaves using QSPR modeling[J]. Journal of Environmental Science and Health, Part B, 2018, 53(4): 276 − 281. doi: 10.1080/03601234.2017.1410046
[16] DENG H, YANG L, TAO G, et al. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—Application in methylene blue adsorption from aqueous solution[J]. Journal of Hazardous Materials, 2009, 166(2-3): 1514 − 1521. doi: 10.1016/j.jhazmat.2008.12.080
[17] 陆嫚嫚, 马洁晨, 张学胜, 等. MnOx负载生物质炭对Cu2+、Zn2+的吸附机理研究[J]. 农业环境科学学报, 2018, 37(10): 2297 − 2303. doi: 10.11654/jaes.2017-1684
[18] ZHAI X, LI Z, HUANG B, et al. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization[J]. Science of the Total Environment, 2018, 635: 92 − 99. doi: 10.1016/j.scitotenv.2018.04.119
[19] 汪思龙, 冯宗炜, 黄宇. 土壤活性有机质及其与土壤质量的关系[J]. 生态学报, 2005(3): 513 − 519. doi: 10.3321/j.issn:1000-0933.2005.03.019
[20] 刘智炫, 刘勇军, 彭曙光, 等. 基于长期浅耕模式的烟稻轮作区土壤速效养分垂直分布特征[J]. 中国烟草科学, 2020, 41(3): 28 − 35.
[21] WELLER M. Inorganic Chemistry[M]. 7th edition. Oxford University Press, Oxford, 2018.
[22] ZHANG D, DING A, LI T, et al. Immobilization of Cd and Pb in a contaminated acidic soil amended with hydroxyapatite, bentonite, and biochar[J]. Journal of Soils and Sediments, 2021, 21(6): 2262. doi: 10.1007/s11368-021-02928-9
[23] 王志朴. 污泥与棉杆共热解制备生物炭钝化修复Pb、Cd污染土壤[D]. 北京: 中国矿业大学(北京), 2019.