[1] |
王偲雪, 徐士鸣, 吴曦, 等. 溶液浓差能驱动的REDR阴/阳极独立环路降解废水中的苯酚[J]. 环境工程学报, 2021, 15(3): 886-897. doi: 10.12030/j.cjee.202007087
|
[2] |
魏霞, 周俊利, 谢柳, 等. 苯酚降解菌CM-HZX1菌株的分离、鉴定及降解性能研究[J]. 环境科学学报, 2016, 36(9): 3193-3199.
|
[3] |
杨晓霞, 郭延红, 郑小峰, 等. 活性炭的制备及其对苯酚的吸附[J]. 环境工程学报, 2016, 10(12): 7030-7034. doi: 10.12030/j.cjee.201507181
|
[4] |
张磊, 罗启仕, 陈欣, 等. 苯高效降解菌群富集及其降解机理研究[J]. 环境科学学报, 2021, 41(9): 3770-3776.
|
[5] |
朱慧琳, 曾喜莉, 罗晓仪, 等. 纳米磁铁矿/生物质炭催化对Fenton氧化降解苯酚的增强机理[J]. 环境工程, 2017, 10: 39-43.
|
[6] |
张海涛, 刘文斌, 杨海君, 等. 一株耐盐高效苯酚降解菌的筛选、鉴定、响应面法优化与降酚动力学研究[J]. 环境科学学报, 2016, 36(9): 3200-3207.
|
[7] |
OROZCO A M F, CONTRERAS E M, ZARITZKY N E. Interdependence between the aerobic degradation of BPA and readily biodegradable substrates by activated sludge in semi-continuous reactors[J]. Biodegradation, 2018, 29(6): 579-592. doi: 10.1007/s10532-018-9854-9
|
[8] |
刘国洋, 赵白航, 李军, 等. 好氧颗粒污泥降解苯酚[J]. 环境工程学报, 2014, 8(9): 3645-3650.
|
[9] |
POURAKBAR M, MOUSSAVI G, YAGHMAEIAN K. Enhanced biodegradation of phenol in a novel cyclic activated sludge integrated with a rotating bed bioreactor in anoxic and peroxidase-mediated conditions[J]. RSC Advances, 2018, 8(12): 6293-6305. doi: 10.1039/C7RA12997A
|
[10] |
张伟, 韦朝海, 彭平安, 等. A/O/O生物流化床处理焦化废水中酚类组成及降解特性分析[J]. 环境工程学报, 2010, 4(2): 253-258.
|
[11] |
姜立春, 阮期平, 王晓丽. PVA固定化Corynebacterium sp. JY03降解苯酚的特性研究[J]. 环境工程, 2014, 32(2): 36-40.
|
[12] |
PELLICER-NACHER C, SMETS B F. Structure, composition, and strength of nitrifying membrane-aerated biofilms[J]. Water Research, 2014, 57: 151-161. doi: 10.1016/j.watres.2014.03.026
|
[13] |
ZHENG M, SHI J, XU C, et al. Insights into electroactive biofilms for enhanced phenolic degradation of coal pyrolysis wastewater (CPW) by magnetic activated coke (MAC): Metagenomic analysis in attached biofilm and suspended sludge[J]. Journal of Hazardous Materials, 2020, 395: 122688. doi: 10.1016/j.jhazmat.2020.122688
|
[14] |
TIAN H, XU X, QUJ, et al. Biodegradation of phenolic compounds in high saline wastewater by biofilms adhering on aerated membranes[J]. Journal of Hazardous Materials, 2020, 392: 122463. doi: 10.1016/j.jhazmat.2020.122463
|
[15] |
CHEN R, REN L F, SHAO J, et al. Changes in degrading ability, populations and metabolism of microbes in activated sludge in the treatment of phenol wastewater[J]. RSC Advances, 2017, 7(83): 52841-52851. doi: 10.1039/C7RA09225C
|
[16] |
LEONG M L, LEE K M, LAI S O, et al. Sludge characteristics and performances of the sequencing batch reactor at different influent phenol concentrations[J]. Desalination, 2011, 270(1-3): 181-187. doi: 10.1016/j.desal.2010.11.043
|
[17] |
王欢. 填充床电化学生物反应器降解苯酚废水研究[D]. 沈阳: 沈阳建筑大学, 2017.
|
[18] |
ALVES A P A, LIMA P S, DEZOTTI M, et al. Impact of phenol shock loads on the performance of a combined activated sludge-moving bed biofilm reactor system[J]. International Biodeterioration & Biodegradation, 2017, 123: 146-155.
|
[19] |
ZHUANG H, FANG F. Bioaugmentation with phenol-degrading bacteria (PDB) as a strategy for improving start-up and stability of sequencing biofilm batch reactor (SBBR) for coal gasification wastewater (CGW) treatment[J]. Polish Journal of Environmental Studies, 2020, 29(5): 3955-3964. doi: 10.15244/pjoes/114969
|
[20] |
ISMAIL Z Z, KHUDHAIR H A. Aerobic biodegradation of phenol by immobilized Pseudomonas sp. cells in two different bio-carrier matrices[J]. Journal of Engineering, 2016, 22(4): 68-78.
|
[21] |
YUSOFF N, ONG S, HO L, et al. Theoretical development of biofilm in hybrid growth sequencing batch reactor (HG-SBR) for degradation of phenol[J]. Desalination and Water Treatment, 2018, 107: 100-108. doi: 10.5004/dwt.2018.22124
|
[22] |
WU C, ZHOU Y, SONG J. The activated sludge metabolic characteristics changing sole carbon source from readily biodegradable acetate to toxic phenol[J]. Water Science and Technology, 2016, 73(10): 2324-2331. doi: 10.2166/wst.2016.080
|
[23] |
JOSHI D R, ZHANG Y, TIAN Z, et al. Performance and microbial community composition in a long-term sequential anaerobic-aerobic bioreactor operation treating coking wastewater[J]. Applied Microbiology and Biotechnology, 2016, 100(18): 8191-8202. doi: 10.1007/s00253-016-7591-8
|
[24] |
国家环境保护总局科技标准司. 水质化学需氧量的快速测定快速消解分光光度法: HJ/T 399-2007 [S]. 北京: 中国环境出版社, 2008.
|
[25] |
中华人民共和国生态环境部. 水质挥发酚的测定 4-氨基安替比林分光光度法: HJ 503-2009 [S]. 北京: 中国环境科学出版社出版发行, 2009
|
[26] |
陈胜. 悬浮填料生物膜特性及其处理高浓度有机废水效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.
|
[27] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[28] |
王曦曦, 伦琳, 张继彪, 等. 改进型曝气生物滤池的生物量和生物活性[J]. 环境工程学报, 2012, 6(6): 1829-1833.
|
[29] |
叶星, 马凯迪, 黄俊生, 等. 反硝化生物滤池中生物膜量与脱氮效果和脱氢酶活性的关系[J]. 环境工程学报, 2020, 14(5): 1210-1215. doi: 10.12030/j.cjee.201907157
|
[30] |
孙国胜, 贾晓珊. 多菌种生物膜内各菌种生物量的动力学推定及验证[J]. 环境科学学报, 2011, 31(8): 1627-1632.
|
[31] |
ZHANG B, SUN B S, JIN M, et al. Extraction and Analysis of Extracellular Polymeric Substances in Membrane Fouling in Submerged MBR [J]. Desalination 2008, 22(7): 286-294.
|
[32] |
NUR C, GUVEN O. Extracellular Polysaccharides Produced by Cooling Water Tower Biofilm Bacteria and Their Possible Degradation[J]. Biofouling, 2008, 24(2): 129-135. doi: 10.1080/08927010801911316
|
[33] |
XIAO M, YIN X, GAI H, et al. Effect of hydroxypropyl-β-cyclodextrin on the cometabolism of phenol and phenanthrene by a novel Chryseobacterium sp[J]. Bioresource Technology, 2019, 273: 56-62. doi: 10.1016/j.biortech.2018.10.087
|
[34] |
ZHU Y, ZHANG Y, REN H Q, et al. Physicochemical characteristic and microbial community evolution of biofilm during the start-up period in a moving bed biofilm reactor[J]. Bioresource Technology, 2015, 180: 345-351. doi: 10.1016/j.biortech.2015.01.006
|
[35] |
魏谷, 于鑫, 叶林, 等. 脂磷生物量作为活性生物量指标的研究[J]. 中国给水排水, 2007, 23(9): 1-4. doi: 10.3321/j.issn:1000-4602.2007.09.001
|
[36] |
CHEN Y, HE H, LIU H, et al. Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors[J]. Bioresource Technology, 2018, 249: 890-899. doi: 10.1016/j.biortech.2017.10.092
|
[37] |
WANG J, SUN Z. Effects of different carbon sources on 2, 4, 6-trichlorophenol degradation in the activated sludge process[J]. Bioprocess and Biosystems Engineering, 2020, 43(12): 2143-2152. doi: 10.1007/s00449-020-02400-x
|
[38] |
YAN W, SUN F, LIU J, et al. Enhanced anaerobic phenol degradation by conductive materials via EPS and microbial community alteration[J]. Chemical Engineering Journal, 2018, 352: 1-9. doi: 10.1016/j.cej.2018.06.187
|