[1] ÁVILA C, PELISSARI C, SEZERINO P H, et al. Enhancement of total nitrogen removal through effluent recirculation and fate of PPCPs in a hybrid constructed wetland system treating urban wastewater[J]. Science of the Total Environment, 2017, 584: 414-425.
[2] 张毓媛, 曹晨亮, 任丽君, 等. 不同基质组合及水力停留时间下垂直流人工湿地的除污效果[J]. 生态环境学报, 2016, 25(2): 292-299.
[3] 王玮, 丁怡, 王宇晖, 等. 人工湿地增氧技术在污水脱氮中的应用[J]. 工业水处理, 2014, 34(8): 1-5. doi: 10.11894/1005-829x.2014.34(8).001
[4] 翟俊, 李岳. 微曝气强化人工湿地处理生活污水试验研究[J]. 土木与环境工程学报, 2020, 42(6): 178-184.
[5] ZHONG F, WU J, DAI Y, et al. Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration[J]. Applied Microbiology and Biotechnology, 2015, 99(3): 1499-1512. doi: 10.1007/s00253-014-6063-2
[6] 熊仁, 谢敏, 冯传禄, 等. 厌氧+跌水曝气+人工湿地组合工艺处理农村生活污水[J]. 环境工程学报, 2019, 13(2): 327-331. doi: 10.12030/j.cjee.201808013
[7] 陈静雅, 王晓昌, 郑于聪, 等. 潮汐流人工湿地对高污染河水氮磷的去除特性[J]. 环境科学与技术, 2017, 40(12): 32-37.
[8] 李怀, 阎百兴, 程龙, 等. 出水回流对连续式折流潜流人工湿地脱氮除磷效果的影响[J]. 湿地科学, 2016, 14(6): 860-865.
[9] 潘福霞, 来晓双, 王树志, 等. 曝气条件下进水C/N对水平潜流型人工湿地脱氮效果和氮转化功能微生物丰度的影响[J]. 环境工程学报, 2021, 15(4): 1386-1394. doi: 10.12030/j.cjee.202010136
[10] LI J, HU Z, LI F Z, et al. Effect of oxygen supply strategy on nitrogen removal of biochar-based vertical subsurface flow constructed wetland: Intermittent aeration and tidal flow[J]. Chemosphere, 2019, 223(5): 366-374.
[11] 汪健, 李怀正, 甄葆崇, 等. 间歇曝气对垂直潜流人工湿地脱氮效果的影响[J]. 环境科学, 2016, 37(3): 980-987.
[12] WU H, FAN J, ZHANG J, et al. Decentralized domestic wastewater treatment using intermittently aerated vertical flow constructed wetlands: Impact of influent strengths[J]. Bioresource Technology, 2015, 176: 163-168. doi: 10.1016/j.biortech.2014.11.041
[13] 宋维星, 周衍平, 陈旭, 等. 基于响应曲面法的垂直流人工湿地脱氮工艺优化[J]. 中国海洋大学学报(自然科学版), 2021, 51(2): 102-111.
[14] 李丽. 氮转化功能基因对间歇曝气的响应及其垂直特征分析[D]. 合肥: 安徽建筑大学, 2021.
[15] 褚润, 陈年来, 王小娟, 等. 人工湿地挺水植物脱氮效果研究[J]. 环境污染与防治, 2017, 39(8): 884-889.
[16] CHAND N, KUMAR K, SUTHAR S. “Cattle dung biochar-packed vertical flow constructed wetland for nutrient removal”: Effect of intermittent aeration and wastewater cod/n loads on the removal process[J]. Journal of Water Process Engineering, 2021, 43: 102215. doi: 10.1016/j.jwpe.2021.102215
[17] 吴兴海, 李咏梅. 碳氮比对不同滤料反硝化滤池脱氮效果的影响[J]. 环境工程学报, 2017, 11(1): 55-62. doi: 10.12030/j.cjee.201509116
[18] JI Z P, HOU H Z, XUE J L, et al. Enhanced nitrogen removal by the integrated constructed wetlands with artificial aeration[J]. Environmental Technology & Innovation, 2019, 14: 100362.