[1] |
ARIS A Z, MOHD HIR Z A, RAZAK M R. Metal-organic frameworks (MOFs) for the adsorptive removal of selected endocrine disrupting compounds (EDCs) from aqueous solution: A review[J]. Applied Materials Today, 2020, 21: 100796. doi: 10.1016/j.apmt.2020.100796
|
[2] |
WANG R, MA X, LIU T, et al. Degradation aspects of endocrine disrupting chemicals: A review on photocatalytic processes and photocatalysts[J]. Applied Catalysis A:General, 2020, 597: 117547. doi: 10.1016/j.apcata.2020.117547
|
[3] |
WANG S, ZHU Z, HE J, et al. Steroidal and phenolic endocrine disrupting chemicals (EDCs) in surface water of Bahe River, China: Distribution, bioaccumulation, risk assessment and estrogenic effect on Hemiculter leucisculus[J]. Environmental Pollution, 2018, 243: 103-114. doi: 10.1016/j.envpol.2018.08.063
|
[4] |
胡文兰, 厉志玉, 刘健毅, 等. 杭州市场罐头类食品的双酚A污染调查及其膳食风险评估[J]. 中国食物与营养, 2013, 19(10): 13-16. doi: 10.3969/j.issn.1006-9577.2013.10.003
|
[5] |
LI F, TANG M, LI T, et al. Two-dimensional graphene/g-C3N4 in-plane hybrid heterostructure for enhanced photocatalytic activity with surface-adsorbed pollutants assistant[J]. Applied Catalysis B:Environmental, 2020, 268: 118397. doi: 10.1016/j.apcatb.2019.118397
|
[6] |
LUO W, CHEN X, WEI Z, et al. Three-dimensional network structure assembled by g-C3N4 nanorods for improving visible-light photocatalytic performance[J]. Applied Catalysis B:Environmental, 2019, 255: 117761. doi: 10.1016/j.apcatb.2019.117761
|
[7] |
SINGH J, KUMARI P, BASU S. Degradation of toxic industrial dyes using SnO2/g-C3N4 nanocomposites: Role of mass ratio on photocatalytic activity[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 371: 136-143. doi: 10.1016/j.jphotochem.2018.11.014
|
[8] |
WANG J, XIA Y, ZHAO H, et al. Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution[J]. Applied Catalysis B:Environmental, 2017, 206: 406-416. doi: 10.1016/j.apcatb.2017.01.067
|
[9] |
BI X, YU S, LIU E, et al. Construction of g-C3N4/TiO2 nanotube arrays Z-scheme heterojunction to improve visible light catalytic activity[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 603: 125193. doi: 10.1016/j.colsurfa.2020.125193
|
[10] |
CHEN X, YU C, ZHU R, et al. Photocatalytic performance and mechanism of Z-scheme CuBi2O4/Ag3PO4 in the degradation of diclofenac sodium under visible light irradiation: Effects of pH, H2O2, and S2O82−[J]. Science of the Total Environment, 2020, 711: 134643. doi: 10.1016/j.scitotenv.2019.134643
|
[11] |
RAEISI-KHEIRABADI N, NEZAMZADEH-EJHIEH A. A Z-scheme g-C3N4/Ag3PO4 nanocomposite: Its photocatalytic activity and capability for water splitting[J]. International Journal of Hydrogen Energy, 2020, 45(58): 33381-33395. doi: 10.1016/j.ijhydene.2020.09.028
|
[12] |
HU Z, LYU J, GE M. Role of reactive oxygen species in the photocatalytic degradation of methyl orange and tetracycline by Ag3PO4 polyhedron modified with g-C3N4[J]. Materials Science in Semiconductor Processing, 2020, 105: 104731. doi: 10.1016/j.mssp.2019.104731
|
[13] |
WANG H, LEI Z, LI L, et al. Holey g-C3N4 nanosheet wrapped Ag3PO4 photocatalyst and its visible-light photocatalytic performance[J]. Solar Energy, 2019, 191: 70-77. doi: 10.1016/j.solener.2019.08.071
|
[14] |
ZHOU J, CAI W, DING J, et al. 0D/1D Z-scheme g-C3N4 quantum dot/WO3 composite for efficient Cr (VI) photoreduction under visible light[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105292. doi: 10.1016/j.jece.2021.105292
|
[15] |
YANG S, LIU C, WANG J, et al. Enhanced photocatalytic activity of g-C3N4 quantum dots/Bi3.64Mo0.36O6.55 nanospheres composites[J]. Journal of Solid State Chemistry, 2020, 287: 121347. doi: 10.1016/j.jssc.2020.121347
|
[16] |
LIN X, XU D, ZHAO R, et al. Highly efficient photocatalytic activity of g-C3N4 quantum dots (CNQDs)/Ag/Bi2MoO6 nanoheterostructure under visible light[J]. Separation and Purification Technology, 2017, 178: 163-168. doi: 10.1016/j.seppur.2017.01.020
|
[17] |
XU J, YU H, GUO H. Synthesis and behaviors of g-C3N4 coupled with LaxCo3-xO4 nanocomposite for improved photocatalytic activeity and stability under visible light[J]. Materials Research Bulletin, 2018, 105: 342-348. doi: 10.1016/j.materresbull.2018.04.006
|
[18] |
CHANG F, ZHENG J, WANG X, et al. Heterojuncted non-metal binary composites silicon carbide/g-C3N4 with enhanced photocatalytic performance[J]. Materials Science in Semiconductor Processing, 2018, 75: 183-192. doi: 10.1016/j.mssp.2017.11.043
|
[19] |
GUO J, DDI Y, CHEN X, et al. Synthesis and characterization of Ag3PO4/LaCoO3 nanocomposite with superior mineralization potential for bisphenol A degradation under visible light[J]. Journal of Alloys and Compounds, 2017, 696: 226-233. doi: 10.1016/j.jallcom.2016.11.251
|
[20] |
ZHOU L, TIAN Y, LEI J, et al. Self-modification of g-C3N4 with its quantum dots for enhanced photocatalytic activity[J]. Catalysis Science & Technology, 2018, 8(10): 2617-2623.
|
[21] |
EL MASAOUDI H, BENABDALLAH I, JABER B, et al. Enhanced visible light photocatalytic activity of Cu2+-doped Ag3PO4 nanoparticles[J]. Chemical Physics, 2021, 545: 111133. doi: 10.1016/j.chemphys.2021.111133
|
[22] |
RAJALAKSHMI N, BARATHI D, MEYVEL S, et al. S-scheme Ag2CrO4/g-C3N4 photocatalyst for effective degradation of organic pollutants under visible light[J]. Inorganic Chemistry Communications, 2021, 132: 108849. doi: 10.1016/j.inoche.2021.108849
|
[23] |
NIU P, LIU G, CHENG H M. Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride[J]. Journal of Physical Chemistry C, 2012, 116(20): 11013-11018. doi: 10.1021/jp301026y
|
[24] |
SHI H, YANG S, HAN C, et al. Fabrication of Ag/Ag3PO4/WO3 ternary nanoparticles as superior photocatalyst for phenol degradation under visible light irradiation[J]. Solid State Sciences, 2019, 96: 105967. doi: 10.1016/j.solidstatesciences.2019.105967
|
[25] |
CUI Y, ZHANG X, GUO R, et al. Construction of Bi2O3/g-C3N4 composite photocatalyst and its enhanced visible light photocatalytic performance and mechanism[J]. Separation and Purification Technology, 2018, 203: 301-309. doi: 10.1016/j.seppur.2018.04.061
|
[26] |
CHEN X, LIU Q, WU Q, et al. Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement[J]. Advanced Functional Materials, 2016, 26(11): 1719-1728. doi: 10.1002/adfm.201505321
|
[27] |
MA Z, HUANG X, Xu N, et al. An effective strategy for boosting photoinduced charge separation of Ag3PO4 by BiVO4 with enhanced visible light photodegradation efficiency for levofloxacin and methylene blue[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 229: 117986. doi: 10.1016/j.saa.2019.117986
|