[1] 周建军, 周桔, 冯仁国. 我国土壤重金属污染现状及治理战略[J]. 中国科学院院刊, 2014, 29(3): 315-320.
[2] 毛智勇, 李大勇, 龙迪勇, 等. 重金属污染与生态修复问题研究——以江西省新余市为例[J]. 鄱阳湖学刊, 2013, 3: 5-15.
[3] 王俊能, 赵学敏, 胡国成, 等. 广西龙江鱼类镉含量分布特征及生物积累特性分析[J]. 环境科学, 2019, 40(1): 488-495.
[4] 朱泊丞, 施泽明, 王新宇, 等. 安宁河水体中重金属空间分布特征及来源识别[J]. 四川冶金, 2018, 40(4): 24-31. doi: 10.3969/j.issn.1001-5108.2018.04.006
[5] 朱映川, 刘雯, 周遗品, 等. 水体重金属污染现状及其治理方法研究进展[J]. 广东农业科学, 2008, 8: 143-146. doi: 10.3969/j.issn.1004-874X.2008.06.054
[6] CHENG C H, MA H L, DENG Y Q, et al. Oxidative stress, cell cycle arrest, DNA damage and apoptosis in the mud crab (Scylla paramamosain) induced by cadmium exposure[J]. Chemosphere, 2021, 263: 128277. doi: 10.1016/j.chemosphere.2020.128277
[7] PAITHANKAR J G, SAINI S, DWIVEDI S, et al. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction[J]. Chemosphere, 2021, 262: 128350. doi: 10.1016/j.chemosphere.2020.128350
[8] PINHEIRO J E G, MORAES P Z, RODRIGUEZ M D, et al. Cadmium exposure activates NADPH oxidase, renin-angiotensin system and cyclooxygenase 2 pathways in arteries, inducing hypertension and vascular damage[J]. Toxicology letters, 2020, 333: 80-89. doi: 10.1016/j.toxlet.2020.07.027
[9] THÉVENOD F, CHAKRABORTY P K. The role of wnt/beta-catenin signaling in renal carcinogenesis: Lessons from cadmium toxicity studies[J]. Current Molecular Medicine, 2010, 10(4): 387-404. doi: 10.2174/156652410791316986
[10] 张坤, 罗书. 水体重金属污染治理技术研究进展[J]. 中国环境管理干部学院学报, 2010, 20(3): 62-64. doi: 10.3969/j.issn.1008-813X.2010.03.018
[11] 魏欢欢. 重金属污染水体生物修复治理技术[J]. 化工管理, 2020, 30: 100-101. doi: 10.3969/j.issn.1008-4800.2020.33.049
[12] SALT D E, BLAYLOCK M, KUMAR N P, et al. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants[J]. Biotechnology (N Y), 1995, 13(5): 468-474.
[13] LI J T, GURAJALA H K, WU L H, et al. Hyperaccumulator plants from China: A synthesis of the current state of knowledge[J]. Environmental Science & Technology, 2018, 52(21): 11980-11994.
[14] KÜPPER H, LEITENMAIER B. Cadmium-accumulating plants[J]. Metal Ions in Life Sciences, 2013, 11: 373-393.
[15] EKPERUSI A O, SIKOKI F D, NWACHUKWU E O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective[J]. Chemosphere, 2019, 223: 285-309. doi: 10.1016/j.chemosphere.2019.02.025
[16] BAEK G, SAEED M, CHOI H K. Duckweeds: Their utilization, metabolites and cultivation[J]. Applied Biological Chemistry, 2021, 64(1): 73. doi: 10.1186/s13765-021-00644-z
[17] YANG G L, FENG D, LIU Y T, et al. Research progress of a potential bioreactor: Duckweed[J]. Biomolecules, 2021, 11(1).
[18] DUFF R B. The occurrence of apiose in Lemna (duckweed) and other angiosperms[J]. Biochemical Journal, 1965, 94(3): 768-772. doi: 10.1042/bj0940768
[19] 王兴利, 吴晓晨, 王晨野, 等. 水生植物生态修复重金属污染水体研究进展[J]. 环境污染与防治, 2020, 42(1): 107-112.
[20] 种云霄, 胡洪营, 钱易. pH及无机氮化合物对细脉浮萍生长的影响[J]. 生态学报, 2003, 11: 2293-2298. doi: 10.3321/j.issn:1000-0933.2003.11.012
[21] 李菲菲. 重金属元素铅(Pb)和镉(Cd)对浮水植物紫背浮萍(Spirodela polyrrhiza)的毒理学效应研究[D]. 南京: 南京师范大学, 2016.
[22] 李玥. 镉、铜、锌对四种水生植物的毒性效应[D]. 长春: 东北师范大学, 2007.
[23] 崔姜伟, 崔卫华, 郝春博. 浮萍在环境保护领域的应用研究进展[J]. 环境工程, 2015, 33(S1): 306-309.
[24] CHEN D, ZHANG H, WANG Q, et al. Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza)[J]. Journal of hazardous materials, 2020, 395: 122672. doi: 10.1016/j.jhazmat.2020.122672
[25] ROLLI N M, SUVARNAKHANDI S S, MULGUND G S, et al. Biochemical responses and accumulation of cadmium in Spirodela polyrhiza[J]. Journal of Environmental Biology, 2010, 31(4): 529-532.
[26] 唐利萍, 方扬, 靳艳玲, 等. 重金属镉超富集浮萍品种筛选及其对水体中镉的去除效果[J]. 应用与环境生物学报, 2015, 21(5): 830-836.
[27] KHAN M A, WANI G A, MAJID H, et al. Differential bioaccumulation of select heavy metals from wastewater by Lemna minor[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 105(5): 777-783. doi: 10.1007/s00128-020-03016-3
[28] WANG X, ZHANG B, WU D, et al. Chemical forms governing Cd tolerance and detoxification in duckweed (Landoltia punctata)[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111553. doi: 10.1016/j.ecoenv.2020.111553
[29] CHAUDHURI D, MAJUMDER A, MISRA A K, et al. Cadmium removal by Lemna minor and Spirodela polyrhiza[J]. International Journal of Phytoremediation, 2014, 16(7-12): 1119-1132.
[30] HOAGLAND D R, Davis A R. The composition of the cell sap of the plant in relation to the absorption of ions[J]. Journal of General Physiology, 1923, 5(5): 629-646. doi: 10.1085/jgp.5.5.629
[31] 李荣华, 夏岩石, 刘顺枝, 等. 改进的CTAB提取植物DNA方法[J]. 实验室研究与探索, 2009, 28(9): 14-16. doi: 10.3969/j.issn.1006-7167.2009.09.005
[32] DOUCETTE W J, SHUNTHIRASINGHAM C, DETTENMAIER E M, et al. A review of measured bioaccumulation data on terrestrial plants for organic chemicals: Metrics, variability, and the need for standardized measurement protocols[J]. Environmental Toxicology and Chemistry, 2018, 37(1): 21-33. doi: 10.1002/etc.3992
[33] NAUMANN B, EBERIUS M, APPENROTH K J. Growth rate based dose-response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St[J]. Journal of Plant Physiology, 2007, 164(12): 1656-1664. doi: 10.1016/j.jplph.2006.10.011
[34] KHAN AR, ULLAH I, WAQAS M, et al. Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi[J]. Ecotoxicology and Environmental Safety, 2017, 136: 180-188. doi: 10.1016/j.ecoenv.2016.03.014
[35] HALIM M A, RAHMAN M M, MEGHARAJ M, et al. Cadmium immobilization in the rhizosphere and plant cellular detoxification: role of plant-growth-promoting rhizobacteria as a sustainable solution[J]. Journal of Agricultural and Food Chemistry, 2020, 68(47): 13497-13529. doi: 10.1021/acs.jafc.0c04579
[36] YANG G L, ZHENG M M, TAN A J, et al. Research on the mechanisms of plant enrichment and detoxification of cadmium[J]. Biology (Basel), 2021, 10(6).
[37] 宇克莉, 孟庆敏, 邹金华. 镉对玉米幼苗生长、叶绿素含量及细胞超微结构的影响[J]. 华北农学报, 2010, 25(3): 118-123. doi: 10.7668/hbnxb.2010.03.026
[38] 朱志勇, 郝玉芬, 李友军, 等. 镉对小麦旗叶叶绿素含量及籽粒产量的影响[J]. 核农学报, 2011, 25(5): 1010-1016.
[39] LIU S, ALI S, YANG R, et al. A newly discovered Cd-hyperaccumulator Lantana camara L[J]. Journal of Hazardous Materials, 2019, 371: 233-242. doi: 10.1016/j.jhazmat.2019.03.016
[40] LAN X Y, YAN Y Y, YANG B, et al. Subcellular distribution of cadmium in a novel potential aquatic hyperaccumulator - Microsorum pteropus[J]. Environmental Pollution, 2019, 248: 1020-1027. doi: 10.1016/j.envpol.2019.01.123
[41] ZHANG C, ZHANG P, MO C, et al. Cadmium uptake, chemical forms, subcellular distribution, and accumulation in Echinodorus osiris Rataj[J]. Environmental Science Processes & Impacts, 2013, 15(7): 1459-1465.
[42] ZHONG L, LIN L, LIAO M, et al. Phytoremediation potential of Pterocypsela laciniata as a cadmium hyperaccumulator[J]. Environmental Science and Pollution Research International, 2019, 26(13): 13311-13319. doi: 10.1007/s11356-019-04702-4
[43] LIU Z, HE X, CHEN W, et al. Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator-Lonicera japonica Thunb[J]. Journal of Hazardous Materials, 2009, 169(1-3): 170-175. doi: 10.1016/j.jhazmat.2009.03.090
[44] 单丹, 黄宝成, 冯华军, 等. 两种水生植物对镉净化潜能研究[J]. 科技通报, 2012, 28(7): 173-175. doi: 10.3969/j.issn.1001-7119.2012.07.040
[45] 兰心宇, 王军军, 阎蕴运, 等. 水生植物有翅星蕨(Microsorum pteropus)对镉的超富集能力及抗性生理研究[J]. 中国科学:生命科学, 2017, 47(10): 1113-1123.
[46] ISLAM M S, UENO Y, SIKDER M T, et al. Phytofiltration of arsenic and cadmium from the water environment using Micranthemum umbrosum (J. F. Gmel) S. F Blake as a hyperaccumulator[J]. International Journal of Phytoremediation, 2013, 15(10): 1010-1021. doi: 10.1080/15226514.2012.751356