[1] YAGUB M T, SEN T K, ANG H M. Equilibrium, kinetics, and thermodynamics of methylene blue adsorption by pine tree leaves[J]. Water, Air, & Soil Pollution, 2012, 223(8): 5267-5282.
[2] 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84-94. doi: 10.3969/j.issn.0438-1157.2013.01.011
[3] WU T, LIU X, LIU Y, et al. Application of QD-MOF composites for photocatalysis: Energy production and environmental remediation[J]. Coordination Chemistry Reviews, 2020, 403: 213097. doi: 10.1016/j.ccr.2019.213097
[4] YAN D Y, HU H, GAO N Y, et al. Fabrication of carbon nanotube functionalized MIL-101(Fe) for enhanced visible-light photocatalysis of ciprofloxacin in aqueous solution[J]. Applied Surface Science, 2019, 498: 143836. doi: 10.1016/j.apsusc.2019.143836
[5] MEI W D, SONG H, TIAN Z Y, et al. Efficient photo-Fenton like activity in modified MIL-53(Fe) for removal of pesticides: Regulation of photogenerated electron migration[J]. Materials Research Bulletin, 2019, 119: 110570. doi: 10.1016/j.materresbull.2019.110570
[6] WANG Q, GAO Q, AL-ENIZI A M, et al. Recent advances in MOF-based photocatalysis: Environmental remediation under visible light[J]. Inorganic Chemistry Frontiers, 2020: 7.
[7] CVR A, KRR B, VVNH A, et al. Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: Synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes[J]. International Journal of Hydrogen Energy, 2020, 45(13): 7656-7679. doi: 10.1016/j.ijhydene.2019.02.144
[8] LI B, MA J G, CHENG P. Integration of metal nanoparticles into metal-organic frameworks for composite catalysts: Design and synthetic strategy[J]. Small, 2019, 15(32): 1804849. doi: 10.1002/smll.201804849
[9] YUAN S, FENG L, WANG K, et al. Stable metal-organic frameworks: Design, synthesis, and applications[J]. Advanced Materials, 2018, 30(37): 1704303. doi: 10.1002/adma.201704303
[10] LI Y, XIA Y, LIU K L, et al. Constructing Fe-MOF-Derived Z-Scheme photocatalysts with enhanced charge transport: Nanointerface and carbon sheath synergistic effect[J]. ACS Applied Materials And Interfaces, 2020, 12(22): 25494-25502. doi: 10.1021/acsami.0c06601
[11] HUANG C W, NGUYEN V H, ZHOU S R, et al. Metal–organic frameworks: Preparation and applications in highly efficient heterogeneous photocatalysis[J]. Sustainable Energy & Fuels, 2020: 4.
[12] WANG Y C, LIU X Y, WANG X X, et al. Metal-organic frameworks based photocatalysts: Architecture strategies for efficient solar energy conversion[J]. Chemical Engineering Journal, 2021, 419(16): 129459.
[13] DING M, CAI X, JIANG H L. Improving MOF stability: Approaches and applications[J]. Chemical Science, 2019, 10(44): 10209-10230. doi: 10.1039/C9SC03916C
[14] 周锋, 任向红, 刘建友, 等. 光催化降解水体有机污染物的研究进展[J]. 材料工程, 2018, 46(10): 9-19. doi: 10.11868/j.issn.1001-4381.2017.000972
[15] ZHANG W, ZHANG R Z, HUANG Y Q, et al. Effect of the synergetic interplay between the electrostatic interactions, size of the dye molecules, and adsorption sites of MIL-101(Cr) on the adsorption of organic dyes from aqueous solutions[J]. Crystal Growth & Design, 2018, 18(12): 7533-7540.
[16] GAUTAM S, ARAWAL H, THAKUR M, et al. Metal oxides and metal organic frameworks for the photocatalytic degradation: A review[J]. Journal of Environmental Chemical Engineering, 2020, 8(3): 103726. doi: 10.1016/j.jece.2020.103726
[17] GUO J, WAN Y, ZHU Y, et al. Advanced photocatalysts based on metal nanoparticle/metalorganic framework composites[J]. 纳米研究:英文版, 2021, 14(7): 16.
[18] JIANG H L, SUN K, LIU M, et al. Incorporating transition metal phosphides into Metal‐organic frameworks for enhanced photocatalysis[J]. Angewandte Chemie International Edition, 2020, 132(50):22937-22943.
[19] LIANG R W, HUANG R K, WANG X X, et al. Functionalized MIL-68(In) for the photocatalytic treatment of Cr(VI)-containing simulation wastewater: Electronic effects of ligand substitution[J]. Applied Surface Science, 2019, 464(15):396-403.
[20] HUANG H, WANG X S, PHILO D, et al. Toward visible-light-assisted photocatalytic nitrogen fixation: A titanium metal organic framework with functionalized ligands[J]. Applied Catalysis B:Environmental, 2020, 267: 118686. doi: 10.1016/j.apcatb.2020.118686
[21] WU X P, GAGLIARDI L, TRUHLAR D G. Metal doping in cerium metal-organic frameworks for visible-response water splitting photocatalysts[J]. Journal of Chemical Physics, 2019, 150(4): 041701. doi: 10.1063/1.5043538
[22] XUE D, YLA B, GR A, et al. Catalytic degradation of methylene blue by Fenton-like oxidation of Ce-doped MOF - ScienceDirect[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020: 608.
[23] WANG D K, HUANG R K, LIU W J, et al. Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways[J]. ACS Catalysis, 2014, 4(12): 4254-4260. doi: 10.1021/cs501169t
[24] XIONG L S, LI S S, ZHEN W H, et al. Effects of electron-donating groups on the photocatalytic reaction of MOFs[J]. Catalysis Science & Technology, 2018, 8: 1696-1703.
[25] NASALEVICH M A, VAN DER VEEN M, KAPTEIJN F, et al. Metal-organic frameworks as heterogeneous photocatalysts: Advantages and challenges[J]. CrystEngComm, 2014, 16(23): 4919. doi: 10.1039/C4CE00032C
[26] BARBOSA A D S, JULIÃO D, FERNANDES D M, et al. Catalytic performance and electrochemical behaviour of metal-organic frameworks: MIL-101(Fe) versus NH2-MIL-101(Fe)[J]. Polyhedron, 2017, 127: 464-470. doi: 10.1016/j.poly.2016.10.032
[27] ČENDAK T, ŽUNKOVIČ E, GODEC T U, et al. Indomethacin embedded into MIL-101 frameworks: A solid-state NMR study[J]. Journal of Physical Chemistry C, 2014, 118(12): 6140-6150. doi: 10.1021/jp412566p
[28] 王茀学, 王崇臣, 王鹏, 等. UiO系列金属-有机骨架的合成方法与应用[J]. 无机化学学报, 2017, 33(5): 713-737. doi: 10.11862/CJIC.2017.105
[29] NASALEVICH M A, GOESTEN M G, SAVENIJE T J, et al. Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis[J]. Chemistry Communication, 2013, 49(90): 10575-10577. doi: 10.1039/C3CC46398B
[30] DEVIC T, SERRE C. High valence 3p and transition metal based MOFs[J]. Chemical Society Reviews, 2014, 43(16): 6097-6115. doi: 10.1039/C4CS00081A
[31] Zhu X W, Zhou X P, Li D. Exceptionally water stable heterometallic gyroidal MOFs: Tuning the porosity and hydrophobicity by doping metal ions[J]. Chemical Communications, 2016, 52(39): 6513-6516. doi: 10.1039/C6CC02116F
[32] KHATAEE A, GHOLAMI P, SHAYDAEI M, et al. Preparation of nanostructured pyrite with N2 glow discharge plasma and the study of its catalytic performance in the heterogeneous Fenton process[J]. New Journal of Chemistry, 2016: 10.1039. C5NJ03594E.
[33] HENDON C H, TIANA D, FONTECAVE M, et al. Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization[J]. Journal of the American Chemical Society, 2013, 135(30): 10942-10945. doi: 10.1021/ja405350u
[34] GOMES SILVA C, LUZ I, LLABRÉS I XAMENA F X, et al. Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation[J]. Chemistry, 2010, 16(36): 11133-11138. doi: 10.1002/chem.200903526
[35] GOESTEN M G, KAPTEIJN F, GASCON J. Fascinating chemistry or frustrating unpredictability: Observations in crystal engineering of metal–organic frameworks[J]. CrystEngComm, 2013, 15(45): 9249. doi: 10.1039/c3ce41241e
[36] ARAYA T, CHEN C C, JIA M K, et al. Selective degradation of organic dyes by a resin modified Fe-based metal-organic framework under visible light irradiation[J]. Optical Materials, 2017, 64: 512-523. doi: 10.1016/j.optmat.2016.11.047
[37] 谢雯静, 袁松虎. 二价铁形态对沉积物活化氧气产生羟自由基氧化效应的影响[C] . 中国矿物岩石地球化学学会学术年会, 2019: 761.
[38] PAN S, WANG S, ZHANG Y, et al. Surface Fe3+-decorated pristine SnO2 nanoparticles with enhanced ·OH radical generation performance[J]. Catalysis Communications, 2012, 24: 96-99. doi: 10.1016/j.catcom.2012.03.034
[39] HOU M F, LIAO L, ZHANG W D, et al. Degradation of rhodamine B by Fe(0)-based fenton process with H2O2[J]. Chemosphere, 2011, 83(9): 1279-1283. doi: 10.1016/j.chemosphere.2011.03.005