[1] WU S L, SUN J, CHEN X M, et al. Unveiling the mechanisms of medium-chain fatty acid production from waste activated sludge alkaline fermentation liquor through physiological, thermodynamic and metagenomic investigations[J]. Water Research, 2019, 169: 115218.
[2] 王冰. 餐厨垃圾厌氧发酵产中链脂肪酸的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019
[3] 方卉, 赵剑斐, 彭道平, 等. 秸秆混合厌氧发酵研究进展[J]. 四川环境, 2019, 38(3): 187-192.
[4] 朱文彬. 有机废物厌氧发酵生物合成己酸研究进展[J]. 环境工程, 2020, 38(1): 128-134.
[5] AGLER M T, SPIRITO C M, USACK J G, et al. Chain elongation with reactor microbiomes: Upgrading dilute ethanol to medium-chain carboxylates[J]. Energy & Environmental Science, 2012, 5(8): 8189-8192.
[6] ANGENENT L T, RICHTER H, BUCKEL W, et al. Chain elongation with reactor microbiomes: Open-culture biotechnology to produce biochemicals[J]. Environmental Science & Technology, 2016, 50(6): 2796-2810.
[7] GROOTSCHOLTEN T I M, STRIK D P B T B, STEINBUSCH K J J, et al. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol[J]. Applied Energy, 2014, 116: 223-229. doi: 10.1016/j.apenergy.2013.11.061
[8] 刘春梅. 两相法厌氧发酵产己酸及其微生物学研究[D]. 无锡: 江南大学, 2018
[9] CAVALCANTE W D A, LEITAO R C, GEHRING T A, et al. Anaerobic fermentation for n-caproic acid production: A review[J]. Process Biochemistry, 2017, 54: 106-119. doi: 10.1016/j.procbio.2016.12.024
[10] 陈哲柯. 基于厌氧发酵的剩余污泥产中链脂肪酸研究[D]. 长沙: 湖南大学, 2018
[11] WANG Q, ZHANG P, BAO S, et al. Chain elongation performances with anaerobic fermentation liquid from sewage sludge with high total solid as electron acceptor[J]. Bioresource Technology, 2020, 306: 123188. doi: 10.1016/j.biortech.2020.123188
[12] WU Q, JIANG Y, CHEN Y, et al. Opportunities and challenges in microbial medium chain fatty acids production from waste biomass[J]. Bioresource Technology, 2021, 340: 125633. doi: 10.1016/j.biortech.2021.125633
[13] WU Q, BAO X, GUO W, et al. Medium chain carboxylic acids production from waste biomass: Current advances and perspectives[J]. Biotechnology Advance, 2019, 37(5): 599-615. doi: 10.1016/j.biotechadv.2019.03.003
[14] LIU Y, LU F, SHAO L, et al. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum[J]. Bioresource Technology, 2016, 218: 1140-1150. doi: 10.1016/j.biortech.2016.07.067
[15] YIN Y, ZHANG Y, KARAKASHEV D B, et al. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources[J]. Bioresource Technology, 2017, 241: 638-644. doi: 10.1016/j.biortech.2017.05.184
[16] BAO S, WANG Q, ZHANG P, et al. Effect of acid/ethanol ratio on medium chain carboxylate production with different VFAs as the electron acceptor: Insight into carbon Balance and microbial community[J]. Energies, 2019, 12(19): 3720. doi: 10.3390/en12193720
[17] 包率. 污泥水解酸化液链延长混合发酵产中链脂肪酸研究[D]. 北京: 北京林业大学, 2019
[18] AGLER M T, SPIRITO C M, USACK J G, et al. Development of a highly specific and productive process for n-caproic acid production: Applying lessons from methanogenic microbiomes[J]. Water Science and Technology, 2014, 69(1): 62-68. doi: 10.2166/wst.2013.549
[19] GROOTSCHOLTEN T I, STEINBUSCH K J, HAMELERS H V, et al. Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production[J]. Bioresource Technology, 2013, 135: 440-445. doi: 10.1016/j.biortech.2012.10.165
[20] GROOTSCHOLTEN T I M, KINSKY D B F, HAMELERS H V M, et al. Promoting chain elongation in mixed culture acidification reactors by addition of ethanol[J]. Biomass and Bioenergy, 2013, 48: 10-16. doi: 10.1016/j.biombioe.2012.11.019
[21] 卓英莲. 污水厂剩余污泥水解酸化产挥发性脂肪酸的试验研究[D]. 广州: 华南理工大学, 2010
[22] WEIMER P J, STEVENSON D M. Isolation, characterization, and quantification of Clostridium kluyveri from the bovine rumen[J]. Applied Microbiology and Biotechnology, 2011, 94(2): 461-466.
[23] STEINBUSCH K J J, HAMELERS H V M, PLUGGE C M, et al. Biological formation of caproate and caprylate from acetate: Fuel and chemical production from low grade biomass[J]. Energy& Environmental Science, 2011, 4(1): 216-224.
[24] LIU Y, HE P, SHAO L, et al. Significant enhancement by biochar of caproate production via chain elongation[J]. Water Research, 2017, 119: 150-159. doi: 10.1016/j.watres.2017.04.050
[25] VASUDEVAN D, RICHTER H, ANGENENT L T. Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes[J]. Bioresource Technology, 2014, 151: 378-382. doi: 10.1016/j.biortech.2013.09.105
[26] BOLAJI I O, DIONISI D. Acidogenic fermentation of vegetable and salad waste for chemicals production: Effect of pH buffer and retention time[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5933-5943. doi: 10.1016/j.jece.2017.11.001
[27] YU J, HUANG Z, WU P, et al. Performance and microbial characterization of two-stage caproate fermentation from fruit and vegetable waste via anaerobic microbial consortia[J]. Bioresource Technology, 2019, 284: 398-405. doi: 10.1016/j.biortech.2019.03.124
[28] LONKAR S, FU Z, HOLTZAPPLE M. Optimum alcohol concentration for chain elongation in mixed-culture fermentation of cellulosic substrate[J]. Biotechnology and Bioengineering, 2016, 113(12): 2597-2604. doi: 10.1002/bit.26024
[29] REDDY M V, HAYASHI S, CHOI D, et al. Short chain and medium chain fatty acids production using food waste under non-augmented and bio-augmented conditions[J]. Journal of Cleaner Production, 2018, 176: 645-653. doi: 10.1016/j.jclepro.2017.12.166
[30] GROOTSCHOLTEN T I, STEINBUSCH K J, HAMELERS H V, et al. Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter[J]. Bioresource Technology, 2013, 136: 735-738. doi: 10.1016/j.biortech.2013.02.114
[31] GE S, USACK J G, SPIRITO C M, et al. Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction[J]. Environmental Science & Technology, 2015, 49(13): 8012-8021.
[32] 石耀威. 厌氧微生物转化木薯酒糟制取中链脂肪酸工艺及机理研究[D]. 北京: 北京化工大学, 2020
[33] KUCEK L A, NGUYEN M, ANGENENT L T. Conversion of L-lactate into n-caproate by a continuously fed reactor microbiome[J]. Water Research, 2016, 93: 163-171. doi: 10.1016/j.watres.2016.02.018
[34] WU Q, GUO W, YOU S, et al. Concentrating lactate-carbon flow on medium chain carboxylic acids production by hydrogen supply[J]. Bioresource Technology, 2019, 291: 121573.
[35] SPIRITO C M, RICHTER H, RABAEY K, et al. Chain elongation in anaerobic reactor microbiomes to recover resources from waste[J]. Current Opinion in Biotechnology, 2014, 27: 115-122. doi: 10.1016/j.copbio.2014.01.003
[36] 王园园, 张光明, 张盼月, 等. 污泥厌氧发酵制氢研究进展[J]. 水资源保护, 2016, 32(4): 109-116. doi: 10.3880/j.issn.1004-6933.2016.04.018
[37] 苑荣雪. 以污泥发酵液为底物产中链脂肪酸可行性研究[J]. 环境科学与技术, 2019, 42(11): 141-146.
[38] 吴云. 餐厨垃圾厌氧消化影响因素及动力学研究[D]. 重庆: 重庆大学, 2009
[39] CONTRERAS-DAVILA C A, CARRION V J, VONK V R, et al. Consecutive lactate formation and chain elongation to reduce exogenous chemicals input in repeated-batch food waste fermentation[J]. Water Research, 2019, 169: 115215.
[40] 吴远远. 基于厌氧产酸发酵的新型果蔬垃圾厌氧处理工艺研究[D]. 北京: 清华大学, 2016.
[41] 郑明月, 郑明霞, 王凯军, 等. 温度、pH和负荷对果蔬垃圾厌氧酸化途径的影响[J]. 可再生能源, 2012, 30(4): 75-79.
[42] 于佳动. 纤维质农业废弃物微好氧酸化机理及高含固率两相厌氧发酵工艺研究[D]. 北京: 中国农业大学, 2017.
[43] WANG S, ZHANG G, ZHANG P, et al. Rumen fluid fermentation for enhancement of hydrolysis and acidification of grass clipping[J]. Journal of Environmental Management, 2018, 220: 142-148.
[44] ZHANG C, YANG L, TSAPEKOS P, et al. Immobilization of Clostridium kluyveri on wheat straw to alleviate ammonia inhibition during chain elongation for n-caproate production[J]. Environment International, 2019, 127: 134-141. doi: 10.1016/j.envint.2019.03.032
[45] WEIMER P J, NERDAHL M, BRANDL D J. Production of medium-chain volatile fatty acids by mixed ruminal microorganisms is enhanced by ethanol in co-culture with Clostridium kluyveri[J]. Bioresource Technology, 2015, 175: 97-101. doi: 10.1016/j.biortech.2014.10.054
[46] KENEALY W R, CAO Y, WEIMER P J. Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol[J]. Applied Microbiology Biotechnology, 1995, 44: 507-513. doi: 10.1007/BF00169952
[47] KHOR W C, ANDERSEN S, VERVAEREN H, et al. Electricity-assisted production of caproic acid from grass[J]. Biotechnology for Biofuels, 2017, 10: 180. doi: 10.1186/s13068-017-0863-4
[48] 边道林, 孙磊, 王爽, 等. 多底物共发酵产酸特性研究[J]. 黑龙江农业科学, 2014(9): 28-31. doi: 10.3969/j.issn.1002-2767.2014.09.007
[49] 李月寒. 超声波预处理污泥和厨余共发酵产短链脂肪酸的研究[D]. 苏州: 苏州科技大学, 2016
[50] 郑舍予. 剩余污泥联合餐厨垃圾高温共发酵产酸研究[D]. 上海: 华东理工大学, 2019