[1] |
生态环境部, 国家发展和改革委员会, 公安部, 交通运输部, 国家卫生健康委员会. 国家危险废物名录(2021年版)[EB/OL]. [2020-11-25]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk02/202011/t20201127_810202.html.
|
[2] |
联合国环境规划署. 控制危险废物越境转移及其处置巴塞尔公约(1989)[EB/OL]. [1989-03-22]. https://wenku.baidu.com/view/2558e7d1360cba1aa811da2b.html.
|
[3] |
中华人民国共和国统计局, 生态环境部. 中国环境统计年鉴2020 [EB/OL]. [2020-09-23].https://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202108/t20210827_861011.shtml.
|
[4] |
中华人民共和国全国人大常委会. 中华人民共和国固体废物污染环境防治法(2020年修订)[EB/OL]. [2020-04-29]. http://www.gov.cn/xinwen/2020-04/30/content_5507561.htm.
|
[5] |
DING Y J, ZHANG S G, LIU B, et al. Recovery of precious metals from electronic waste and spent catalysts: A review[J]. Resources, Conservation & Recycling, 2019, 141: 284-298.
|
[6] |
HAO J J, WANG Y S, WU Y F, et al. Metal recovery from waste printed circuit boards: A review for current status and perspectives[J]. Resources, Conservation & Recycling, 2020, 157: 104787.
|
[7] |
GAUSTAD G, WILLIAMS E, LEADER A. Rare earth metals from secondary sources: Review of potential supply from waste and byproducts[J]. Resources, Conservation & Recycling, 2021, 167: 105213.
|
[8] |
KRISHNAN S, ZULKAPLI N S, KAMYAB H, et al. Current technologies for recovery of metals from industrial wastes: An overview[J]. Environmental Technology & Innovation, 2021, 22: 105525.
|
[9] |
胡华龙, 郑洋, 郭瑞. 发达国家和地区危险废物名录管理实践[J]. 中国环境管理, 2016, 8(4): 76-81.
|
[10] |
王海北. 我国二次资源循环利用技术现状与发展趋势[J]. 有色金属(冶炼部分), 2019(9): 1-11.
|
[11] |
LI H, EKSTEEN J, ORABY E. Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives: A review[J]. Resources, Conservation & Recycling, 2018, 139: 122-139.
|
[12] |
生态环境部, 国家市场监督管理总局. 危险废物鉴别标准通则: GB 5085.7-2019[S]. 北京: 中国标准出版社, 2019.
|
[13] |
GU T Y, RASTEGAR S O, MOUSAVI S M, et al. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge (review)[J]. Bioresource Technology, 2018, 261: 428-440. doi: 10.1016/j.biortech.2018.04.033
|
[14] |
ROY J J, CAO B, MADHAVI S. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach[J]. Chemosphere, 2021, 282: 130944. doi: 10.1016/j.chemosphere.2021.130944
|
[15] |
PATHAK A, KOTHARI R, VINOBA M, et al. Fungal bioleaching of metals from refinery spent catalysts: A critical review of current research, challenges, and future directions[J]. Journal of Environmental Management, 2021, 280: 111789. doi: 10.1016/j.jenvman.2020.111789
|
[16] |
WANG J, TIAN B Y, QIAN C, et al. Function exploration of extracellular polymeric substances (EPS) in the bioleaching of obsolete electric vehicle LiNixCoyMn1-x-yO2 Li-ion batteries[J]. Journal of Hazardous Materials, 2018, 354: 250-257. doi: 10.1016/j.jhazmat.2018.05.009
|
[17] |
NIU T Q, WANG J, CHU H C, et al. Deep removal of arsenic from regenerated products of spent V2O5-WO3/TiO2 SCR catalysts and its concurrent activation by bioleaching through a novel mechanism[J]. Chemical Engineering Journal, 2021, 65: 1103-1110.
|
[18] |
辛宝平, 王佳, 张永涛. 一种利用膜生物反应器培养生物淋沥液处理固体废弃物的方法: ZL201510069295.2 [P]. 2015-02-10.
|
[19] |
QIAN C, WANG J, TIAN B Y, et al. Optimization of thermal pre-treatment for simultaneous and efficient release of both Co and Mo from used Co-Mo catalyst by bioleaching and their mechanisms[J]. Hydrometallurgy, 2020, 198: 1053-1064.
|