[1] 孟琪莉, 孙冲. 高级氧化技术在工业难降解有机废水处理中的应用研究进展[J]. 工业用水与废水, 2021, 52(3): 1-5.
[2] 陆恬奕, 李宇, 徐瑞, 等. 高级氧化技术水处理研究进展[J]. 当代化工, 2021, 50(5): 1257-1260.
[3] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
[4] 吴秀, 方迪, 危亚云, 等. 热活化过一硫酸盐调理强化厌氧消化污泥脱水的研究[J]. 环境科学学报, 2021, 41(11): 4547-4553.
[5] 段书乐, 马婧捷, 党宁, 等. 紫外高级氧化工艺降解水溶液中的人工甜味剂[J]. 环境科学学报, 2020, 40(12): 4289-4296.
[6] 王肖磊, 吴根华, 方国东, 等. 过渡金属活化过硫酸盐在环境修复领域的研究进展[J]. 生态与农村环境学报, 2021, 37(2): 145-154.
[7] 田婷婷, 李朝阳, 王召东, 等. 过渡金属活化过硫酸盐降解有机废水技术研究进展[J]. 化工进展, 2021, 40(6): 3480-3488.
[8] DING Y, WANG X, FU L, et al. Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective[J]. Science of the Total Environment, 2021, 765: 142794. doi: 10.1016/j.scitotenv.2020.142794
[9] ZHAO C, SHAO B, YAN M, et al. Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: A review[J]. Chemical Engineering Journal, 2021, 416: 128829. doi: 10.1016/j.cej.2021.128829
[10] CAI Q Q, LEE B C Y, ONG S L, et al. Fluidized-bed Fenton technologies for recalcitrant industrial wastewater treatment:Recent advances, challenges and perspective[J]. Water Research, 2021, 190: 116692. doi: 10.1016/j.watres.2020.116692
[11] ZHANG W, LI Y, FAN X, et al. Synergy of nitrogen doping and structural defects on hierarchically porous carbons toward catalytic oxidation via a non-radical pathway[J]. Carbon, 2019, 155: 268-278. doi: 10.1016/j.carbon.2019.08.071
[12] ENOKI T, FUJII S, TAKAI K. Zigzag and armchair edges in graphene[J]. Carbon, 2012, 50(9): 3141-3145. doi: 10.1016/j.carbon.2011.10.004
[13] WOHNER N, LAM P K, SATTLER K. Systematic energetics study of graphene nanoflakes: From armchair and zigzag to rough edges with pronounced protrusions and overcrowded bays[J]. Carbon, 2015, 82: 523-537. doi: 10.1016/j.carbon.2014.11.004
[14] MIELKE S L, TROYA D, ZHANG S, et al. The role of vacancy defects and holes in the fracture of carbon nanotubes[J]. Chemical Physics Letters, 2004, 390(4): 413-420.
[15] LIU J, LIANG T, TU R, et al. Redistribution of π and σ electrons in boron-doped graphene from DFT investigation[J]. Applied Surface Science, 2019, 481: 344-352. doi: 10.1016/j.apsusc.2019.03.109
[16] ADIL S, KIM W S, KIM T H, et al. Defective, oxygen-functionalized multi-walled carbon nanotubes as an efficient peroxymonosulfate activator for degradation of organic pollutants[J]. Journal of Hazardous Materials, 2020, 396: 122757. doi: 10.1016/j.jhazmat.2020.122757
[17] WANG J, DUAN X, GAO J, et al. Roles of structure defect, oxygen groups and heteroatom doping on carbon in nonradical oxidation of water contaminants[J]. Water Research, 2020, 185: 116244. doi: 10.1016/j.watres.2020.116244
[18] OUYANG D, CHEN Y, YAN J, et al. Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1, 4-dioxane: Important role of biochar defect structures[J]. Chemical Engineering Journal, 2019, 370: 614-624. doi: 10.1016/j.cej.2019.03.235
[19] ZHANG H, LI X, ZHANG D, et al. Comprehensive electronic structure characterization of pristine and nitrogen/phosphorus doped carbon nanocages[J]. Carbon, 2016, 103: 480-487. doi: 10.1016/j.carbon.2016.03.042
[20] KANG B, SHI H, WANG F-F, et al. Importance of doping site of B, N, and O in tuning electronic structure of graphynes[J]. Carbon, 2016, 105: 156-162. doi: 10.1016/j.carbon.2016.04.032
[21] ZHOU X, ZHAO C, WU G, et al. DFT study on the electronic structure and optical properties of N, Al, and N-Al doped graphene[J]. Applied Surface Science, 2018, 459: 354-362. doi: 10.1016/j.apsusc.2018.08.015
[22] HU P, SU H, CHEN Z, et al. Selective Degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation[J]. Environmental Science & Technology, 2017, 51(19): 11288-11296.
[23] QI F, CHU W, XU B. Ozonation of phenacetin in associated with a magnetic catalyst CuFe2O4: The reaction and transformation[J]. Chemical Engineering Journal, 2015, 262: 552-562. doi: 10.1016/j.cej.2014.09.068
[24] DU J, BAO J, LIU Y, et al. Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A[J]. Journal of Hazardous Materials, 2016, 320: 150-159. doi: 10.1016/j.jhazmat.2016.08.021
[25] ZHANG T, CHEN Y, WANG Y, et al. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation[J]. Environmental Science & Technology, 2014, 48(10): 5868-5875.
[26] LIU X, CHEN Y, YAO Y, et al. Iodine-doped carbon fibers as an efficient metal-free catalyst to activate peroxymonosulfate for the removal of organic pollutants[J]. Catalysis Science & Technology, 2018, 8(21): 5482-5489.
[27] SUN P, LIU H, FENG M, et al. Nitrogen-sulfur co-doped industrial graphene as an efficient peroxymonosulfate activator: Singlet oxygen-dominated catalytic degradation of organic contaminants[J]. Applied Catalysis B:Environmental, 2019, 251: 335-345. doi: 10.1016/j.apcatb.2019.03.085
[28] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16 Rev. C. 01 [M]. Wallingford, CT. 2016.
[29] LI X, YANG S, DZAKPASU M, et al. Galvanic corrosion of zero-valent iron to intensify Fe2+ generation for peroxymonosulfate activation[J]. Chemical Engineering Journal, 2021, 417: 128023. doi: 10.1016/j.cej.2020.128023
[30] WANG G, NIE X, JI X, et al. Enhanced heterogeneous activation of peroxymonosulfate by Co and N codoped porous carbon for degradation of organic pollutants: The synergism between Co and N[J]. Environmental Science:Nano, 2019, 6(2): 399-410. doi: 10.1039/C8EN01231H