[1] |
蒋玲燕, 周振, 王英俊, 等. 硫化物对污水处理厂硝化菌活性的抑制作用[J]. 环境工程学报, 2012, 6(11): 4065-4068.
|
[2] |
余飞, 万俊锋, 赵雅光, 等. 硫酸盐还原菌SRB除砷的影响因素[J]. 环境工程学报, 2016, 10(7): 3898-3904. doi: 10.12030/j.cjee.201502116
|
[3] |
ZHU Y P, WU M, GAO N Y, et al. Removal of antimonate from wastewater by dissimilatory bacterial reduction: Role of the coexisting sulfate[J]. Journal of Hazardous Materials, 2018, 341: 36-45. doi: 10.1016/j.jhazmat.2017.07.042
|
[4] |
MORAES B S, SOUZA T S O, FORESTI E. Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors[J]. Process Biochemistry, 2012, 47(9): 1395-1401. doi: 10.1016/j.procbio.2012.05.008
|
[5] |
贾妍艳, 李璇, 杨伟明, 等. 硫自养反硝化工艺去除布洛芬[J]. 环境工程学报, 2017, 11(6): 3461-3467. doi: 10.12030/j.cjee.201603018
|
[6] |
LAU G N, SHARMA K R, CHEN G H, et al. Integration of sulphate reduction, autotrophic denitrification and nitrification to achieve low-cost excess sludge minimisation for Hong Kong sewage[J]. Water Science and Technology, 2006, 53(3): 227-235. doi: 10.2166/wst.2006.101
|
[7] |
WANG J, LU H, CHEN G H, et al. A novel sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process for saline wastewater treatment[J]. Water Research, 2009, 43(9): 2363-2372. doi: 10.1016/j.watres.2009.02.037
|
[8] |
WU D, EKAMA G A, WANG H G, et al. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated enhanced biological phosphorus removal (EBPR) process[J]. Water Research, 2014, 49: 251-264. doi: 10.1016/j.watres.2013.11.029
|
[9] |
赵晴, 余美, 程娜, 等. 碳硫比和硝酸根投加量对DS-EBPR工艺的影响研究[J]. 水处理技术, 2016, 42(10): 71-75.
|
[10] |
GUO G, WU D, HAO T W, et al. Functional bacteria and process metabolism of the denitrifying sulfur conversion-associated enhanced biological phosphorus removal (DS-EBPR) system: An investigation by operating the system from deterioration to restoration[J]. Water Research, 2016, 95: 289-299. doi: 10.1016/j.watres.2016.03.013
|
[11] |
GUO G, EKAMA G A, WANG Y Y, et al. Advances in sulfur conversion-associated enhanced biological phosphorus removal in sulfate-rich wastewater treatment: A review[J]. Bioresource Technology, 2019, 285: 121303. doi: 10.1016/j.biortech.2019.03.142
|
[12] |
LAW Y, KIRKEGAARD R H, COKRO A A, et al. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions[J]. Scientific Reports, 2016, 6(1): 25719. doi: 10.1038/srep25719
|
[13] |
OEHMEN A, LEMOS P C, CARVALHO G, et al. Advances in enhanced biological phosphorus removal: From micro to macro scale[J]. Water Research, 2007, 41(11): 2271-2300. doi: 10.1016/j.watres.2007.02.030
|
[14] |
LOPEZ-VAZQUEZ C M, OEHMEN A, HOOIJMANS C M, et al. Modeling the PAO-GAO competition: Effects of carbon source, pH and temperature[J]. Water Research, 2009, 43(2): 450-462. doi: 10.1016/j.watres.2008.10.032
|
[15] |
彭党聪, 张晓霞, 樊香妮, 等. 温度对SBR强化生物除磷工艺除磷性能的影响[J]. 环境工程学报, 2016, 10(11): 6106-6110. doi: 10.12030/j.cjee.201506073
|
[16] |
SMOLDERS G J F, MEIJ J, LOOSDRECHT M C M, et al. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence[J]. Biotechnology and Bioengineering, 1994, 43(6): 461-470. doi: 10.1002/bit.260430605
|
[17] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[18] |
OEHMEN A, KELLER-LEHMANN B, ZENG R J, et al. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070(1/2): 131-136. doi: 10.1016/j.chroma.2005.02.020
|
[19] |
JENKINS D, RICHARD M G, DIGGER G T. Manual on the cause and control of activated sludge bulking and foaming[M]. Third. Florida: CRC Press, 2004.
|
[20] |
JIANG G M, SHARMA K R, GUISASOLA A, et al. Sulfur transformation in rising main sewers receiving nitrate dosage[J]. Water Research, 2009, 43(17): 4430-4440. doi: 10.1016/j.watres.2009.07.001
|
[21] |
SAITO T, BRDJANOVIC D, LOOSDRECHT M C M. Effect of nitrite on phosphate uptake by phosphate accumulating organisms[J]. Water Research, 2004, 38(17): 3760-3768. doi: 10.1016/j.watres.2004.05.023
|
[22] |
GUO G, WU D, HAO T, et al. Denitrifying sulfur conversion-associated EBPR: The effect of pH on anaerobic metabolism and performance[J]. Water Research, 2017, 123: 687-695. doi: 10.1016/j.watres.2017.07.020
|
[23] |
WU D, EKAMA G A, LU H, et al. A new biological phosphorus removal process in association with sulfur cycle[J]. Water Research, 2013, 47(9): 3057-3069. doi: 10.1016/j.watres.2013.03.009
|
[24] |
CARVALHO G, LEMOS P C, OEHMEN A, et al. Denitrifying phosphorus removal: Linking the process performance with the microbial community structure[J]. Water Research, 2007, 41(19): 4383-4396. doi: 10.1016/j.watres.2007.06.065
|
[25] |
ZENG R J, YUAN Z G, KELLER J. Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system[J]. Biotechnology and Bioengineering, 2003, 81(4): 397-404. doi: 10.1002/bit.10484
|
[26] |
ZENG R J, LOOSDRECHT M C M, YUAN Z G, et al. Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems[J]. Biotechnology and Bioengineering, 2003, 81(1): 92-105. doi: 10.1002/bit.10455
|