[1] 董萌. 地下水硝酸盐污染的原位修复试验研究[D]. 邯郸: 河北工程大学, 2015.
[2] GHAFARI S, HASAN M, AROUA M K. Bio-electrochemical removal of nitrate from water and wastewater:A review[J]. Bioresource Technology, 2008, 99(10): 3965-3974. doi: 10.1016/j.biortech.2007.05.026
[3] FENG S S, LIN X, TONG Y J, et al. Biodesulfurization of sulfide wastewater for elemental sulfur recovery by isolated Halothiobacillus neapolitanus in an internal airlift loop reactor[J]. Bioresource Technology, 2018, 264: 244-252. doi: 10.1016/j.biortech.2018.05.079
[4] ZHOU J, WANG H Y, YANG K, et al. Autotrophic denitrification by nitrate-dependent Fe(II) oxidation in a continuous up-flow biofilter[J]. Bioprocess and Biosystems Engineering, 2016, 39(2): 277-284. doi: 10.1007/s00449-015-1511-7
[5] 董文艺, 赵志军, 李继. 甲烷作为反硝化气体碳源的研究进展[J]. 安全与环境工程, 2011, 18(4): 64-69. doi: 10.3969/j.issn.1671-1556.2011.04.015
[6] 王劲松, 张召基, 王晓君, 等. 反硝化型甲烷厌氧氧化微生物人工富集与应用研究进展[J]. 水处理技术, 2017, 43(12): 8-13.
[7] 楼菊青, 王析镭, 杨东叶, 等. 不同接种物对富集反硝化型甲烷厌氧氧化微生物的影响[J]. 环境科学学报, 2016, 36(11): 4087-4095.
[8] 薛松, 张梦竹, 李琳, 等. 甲烷厌氧氧化协同硝酸盐还原菌群驯化及其群落特征[J]. 环境科学, 2018, 39(3): 1357-1364.
[9] VASILIADOU I A, KARANASIOS K A, PAVLOU S, et al. Experimental and modelling study of drinking water hydrogenotrophic denitrification in packed-bed reactors[J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 812-824.
[10] HE Z F, GENG S, SHEN L D, et al. The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction[J]. Water Research, 2015, 68: 554-562. doi: 10.1016/j.watres.2014.09.055
[11] HUANG B, CHI G Y, CHEN X, et al. Removal of highly elevated nitrate from drinking water by pH-heterogenized heterotrophic denitrification facilitated with ferrous sulfide-based autotrophic denitrification[J]. Bioresource Technology, 2011, 102(21): 10154-10157. doi: 10.1016/j.biortech.2011.08.048
[12] 徐亚同. pH值、温度对反硝化的影响[J]. 中国环境科学, 1994, 14(4): 308-313. doi: 10.3321/j.issn:1000-6923.1994.04.010
[13] 钱祝胜, 付亮, 丁静, 等. 中空纤维膜生物反应器富集反硝化厌氧甲烷氧化菌群的研究[J]. 中国科学技术大学学报, 2014, 44(11): 887-892. doi: 10.3969/j.issn.0253-2778.2014.11.002
[14] CHEN D, WANG H Y, YANG K, et al. Performance and microbial communities in a combined bioelectrochemical and sulfur autotrophic denitrification system at low temperature[J]. Chemosphere, 2018, 193: 337-342. doi: 10.1016/j.chemosphere.2017.11.017
[15] LUO J H, CHEN H, YUAN Z G, et al. Methane-supported nitrate removal from groundwater in a membrane biofilm reactor[J]. Water Research, 2018, 132: 71-78. doi: 10.1016/j.watres.2017.12.064
[16] SHU D T, HE Y L, YUE H, et al. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing[J]. Bioresource Technology, 2015, 186: 163-172. doi: 10.1016/j.biortech.2015.03.072
[17] LU Y Z, CHEN G J, BAI Y N, et al. Chromium isotope fractionation during Cr(VI) reduction in a methane-based hollow-fiber membrane biofilm reactor[J]. Water Research, 2018, 130: 263-270. doi: 10.1016/j.watres.2017.11.045
[18] CAI C, HU S H, CHEN X M, et al. Effect of methane partial pressure on the performance of a membrane biofilm reactor coupling methane-dependent denitrification and anammox[J]. Science of the Total Environment, 2018, 639: 278-285. doi: 10.1016/j.scitotenv.2018.05.164
[19] LIAO R H, LI Y, YU X M, et al. Performance and microbial diversity of an expanded granular sludge bed reactor for high sulfate and nitrate waste brine treatment[J]. Journal of Environmental Sciences, 2014, 26(4): 717-725. doi: 10.1016/S1001-0742(13)60479-9
[20] CAO S B, DU R, ZHANG H Y, et al. Understanding the granulation of partial denitrification sludge for nitrite production[J]. Chemosphere, 2019, 236: 124389. doi: 10.1016/j.chemosphere.2019.124389
[21] ZHANG Z Q, CHEN H Z, MU X Y, et al. Nitrate application decreased microbial biodiversity but stimulated denitrifiers in epiphytic biofilms on Ceratophyllum demersum[J]. Journal of Environmental Management, 2020, 269: 110814. doi: 10.1016/j.jenvman.2020.110814
[22] HAN B, MO L Y, FANG Y T, et al. Rates and microbial communities of denitrification and anammox across coastal tidal flat lands and inland paddy soils in East China[J]. Applied Soil Ecology, 2021, 157: 103768. doi: 10.1016/j.apsoil.2020.103768
[23] XU X J, CHEN C, GUAN X, et al. Performance and microbial community analysis of a microaerophilic sulfate and nitrate co-reduction system[J]. Chemical Engineering Journal, 2017, 330: 63-70. doi: 10.1016/j.cej.2017.07.136
[24] NOBU M K, NARIHIRO T, RINKE C, et al. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor[J]. The ISME Journal, 2015, 9(8): 1710-1722. doi: 10.1038/ismej.2014.256
[25] WAKI M, YASUDA T, YOKOYAMA H, et al. Nitrogen removal by co-occurring methane oxidation, denitrification, aerobic ammonium oxidation, and anammox[J]. Applied Microbiology and Biotechnology, 2009, 84(5): 977-985. doi: 10.1007/s00253-009-2112-7
[26] XIAO Y, ZHENG Y, WU S, et al. Bacterial community structure of autotrophic denitrification biocathode by 454 pyrosequencing of the 16S rRNA gene[J]. Microbial Ecology, 2015, 69(3): 492-499. doi: 10.1007/s00248-014-0492-4
[27] LAI C Y, LV P L, DONG Q Y, et al. Bromate and nitrate bioreduction coupled with poly-β-hydroxybutyrate production in a methane-based membrane biofilm reactor[J]. Environmental Science & Technology, 2018, 52(12): 7024-7031.
[28] ALRASHED W, LEE J, PARK J, et al. Hypoxic methane oxidation coupled to denitrification in a membrane biofilm[J]. Chemical Engineering Journal, 2018, 348: 745-753. doi: 10.1016/j.cej.2018.04.202
[29] LONG M, ZHOU C, XIA S Q, et al. Concomitant Cr(VI) reduction and Cr(III) precipitation with nitrate in a methane/oxygen-based membrane biofilm reactor[J]. Chemical Engineering Journal, 2017, 315: 58-66. doi: 10.1016/j.cej.2017.01.018
[30] 关亮炯. 我国水污染现状及治理对策[J]. 科技情报开发与经济, 2004, 14(6): 80-81.
[31] ZHANG M, YANG Q, ZHANG J H, et al. Enhancement of denitrifying phosphorus removal and microbial community of long-term operation in an anaerobic anoxic oxic-biological contact oxidation system[J]. Journal of Bioscience and Bioengineering, 2016, 122(4): 456-466. doi: 10.1016/j.jbiosc.2016.03.019