[1] |
LEVEN L, NYBERG K, SCHNURER A. Conversion of phenols during anaerobic digestion of organic solid waste: A review of important microorganisms and impact of temperature[J]. Journal of Environmental Management, 2012, 95(1): S99-S103.
|
[2] |
张晓云, 盖忠辉, 台萃, 等. 微生物降解苯甲酸的研究进展[J]. 微生物学通报, 2012, 39(12): 1808-1816.
|
[3] |
FANG H, LIU Y, KE S Z, et al. Anaerobic degradation of phenol in wastewater at ambient temperature[J]. Water Science and Technology, 2004, 49(1): 95-102. doi: 10.2166/wst.2004.0028
|
[4] |
ROTARU A E, SHRESTHA P M, LIU F, et al. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy & Environmental Science, 2014, 7(1): 408-415.
|
[5] |
LI H, CHANG J, LIU P, et al. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments[J]. Environmental Microbiology, 2014, 17(5): 1533-1547.
|
[6] |
LOVLEY D R, PHILLIPS E J P. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River[J]. Applied and Environmental Microbiology, 1986, 52(4): 751-757. doi: 10.1128/aem.52.4.751-757.1986
|
[7] |
LOVLEY D R, STOLZ J F, NORD G L, et al. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism[J]. Nature, 1987, 330(6145): 252-254. doi: 10.1038/330252a0
|
[8] |
郭红红, 牧辉, 张晓东, 等. 纳米四氧化三铁对甲烷生物合成途径的影响[J]. 可再生能源, 2018, 36(9): 1271-1277. doi: 10.3969/j.issn.1671-5292.2018.09.002
|
[9] |
钱风越. Fe3O4纳米颗粒对厌氧消化产甲烷过程的影响研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015.
|
[10] |
张杰, 陆雅海. 互营氧化产甲烷微生物种间电子传递研究进展[J]. 微生物学通报, 2015, 42(5): 920-927.
|
[11] |
黄玲艳, 刘星, 周顺桂. 微生物直接种间电子传递: 机制及应用[J]. 土壤学报, 2018, 55(6): 1313-1324.
|
[12] |
靖宪月, 陈姗姗, 周顺桂. 吸收胞外电子的电活性微生物[J]. 微生物学报, 2018, 58(1): 19-27.
|
[13] |
MARUTHUPANDY M, ANAND M, MADURAIVEERAN G, et al. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa[J]. Advances in Natural Sciences-Nanoscience and Nanotechnology, 2015, 6(4): 045007. doi: 10.1088/2043-6262/6/4/045007
|
[14] |
ZHUANG L, TANG J, WANG Y Q, et al. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation[J]. Journal of Hazardous Materials, 2015, 293: 37-45. doi: 10.1016/j.jhazmat.2015.03.039
|
[15] |
AROMOKEYE D A, ONI O E, TEBBEN J, et al. Crystalline iron oxides stimulate methanogenic benzoate degradation in marine sediment-derived enrichment cultures[J]. The ISME Journal, 2020, 15(4): 965-980.
|
[16] |
马金莲. 磁铁矿促进有机质厌氧降解过程及微生物机制初探[D]. 北京: 中国科学院研究生院, 2016.
|
[17] |
YAN W, SUN F, LIU J, et al. Enhanced anaerobic phenol degradation by conductive materials via EPS and microbial community alteration[J]. Chemical Engineering Journal, 2018, 352: 1-9. doi: 10.1016/j.cej.2018.06.187
|
[18] |
张雪, 张辉, 承磊. 获取有机物厌氧降解产甲烷过程中关键功能类群-互营细菌培养物[J]. 微生物学报, 2019, 59(2): 211-223.
|
[19] |
PLUGGE C M, BALK M, STAMS A. Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(2): 391-399. doi: 10.1099/00207713-52-2-391
|
[20] |
QIU Y L, SEKIGUCHI Y, IMACHI H, et al. Sporotomaculum syntrophicum sp. nov., a novel anaerobic, syntrophic benzoate-degrading bacterium isolated from methanogenic sludge treating wastewater from terephthalate manufacturing[J]. Archives of Microbiology, 2003, 179: 242-249. doi: 10.1007/s00203-003-0521-z
|
[21] |
SEKIGUCHI Y, KAMAGATA Y, NAKAMURA K, et al. Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate[J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50: 771-779. doi: 10.1099/00207713-50-2-771
|
[22] |
谢彤彤, 吴凯旋, 迟明妹, 等. 酒糟厌氧消化液中丙酸互营降解菌的富集培养与群落解析[J]. 应用与环境生物学报, 2020, 26(6): 1406-1410.
|