[1] GROMMEN R, VERSTRAETE W. Environmental biotechnology:The ongoing quest[J]. Journal of Biotechnology, 2002, 98(1): 113-123. doi: 10.1016/S0168-1656(02)00090-1
[2] ALI M, OKABE S. Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues[J]. Chemosphere, 2015, 141: 144-153. doi: 10.1016/j.chemosphere.2015.06.094
[3] KUMAR M, DAVEREY A, GU J D, et al. Anammox Processes[J]. //Current Developments in Biotechnology and Bioengineering[M]. Amsterdam:Elsevier, 2017: 381-407.
[4] HU Z, LOTTI T, LOOSDRECHT M V, et al. Nitrogen removal with the anaerobic ammonium oxidation process[J]. Biotechnology Letters, 2013, 35(8): 1145-1154. doi: 10.1007/s10529-013-1196-4
[5] JETTEN M S M, WAGNER M, FUERST J, et al. Microbiology and application of the anaerobic ammonium oxidation (‘anammox’) process[J]. Current Opinion in Biotechnology, 2001, 12(3): 283-288. doi: 10.1016/S0958-1669(00)00211-1
[6] LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences: An application survey[J]. Water Research, 2014, 55: 292-303. doi: 10.1016/j.watres.2014.02.032
[7] XING B S, GUO Q, JJANG X Y, et al. Long-term starvation and subsequent reactivation of anaerobic ammonium oxidation (anammox) granules[J]. Chemical Engineering Journal, 2016, 287: 575-584. doi: 10.1016/j.cej.2015.11.090
[8] 申屠民良.  厌氧附着膜膨胀床反应器的工艺及应用[J]. 污染防治技术, 1994, 7(2): 1718.
[9] 林岚. 厌氧氨氧化—羟基磷酸钙结晶耦合同步脱氮除磷工艺与机理研究[D].  厦门: 厦门大学, 2019.
[10] ZHANG Y, NIU Q, MA H, et al. Long-term operation performance and variation of substrate tolerance ability in an anammox attached film expanded bed (AAFEB) reactor[J]. Bioresource Technology, 2016, 211: 31-40. doi: 10.1016/j.biortech.2016.03.055
[11] 韩博, 李永峰, 王婧婧, 等. 厌氧生物处理工艺的现状与发展前景[J].  上海工程技术大学学报, 2008(2): 156-161.
[12] 王凯军. 厌氧工艺的发展和新型厌氧反应器[J].  环境科学, 1998, 19(1): 94-96.
[13] CARVAJAL-ARROYO J M, PUYOL D, LI G, et al. Starved anammox cells are less resistant to NO2 inhibition[J]. Water Research, 2014, 65: 170-176. doi: 10.1016/j.watres.2014.07.023
[14] LEITAO R C, HAANDEL A C V, ZEEMAN G, et al. The effects of operational and environmental variations on anaerobic wastewater treatment systems: A review[J]. Bioresource Technology, 2006, 97(9): 1105-1118. doi: 10.1016/j.biortech.2004.12.007
[15] JI Y X, JIN R C. Effect of different preservation conditions on the reactivation performance of anammox sludge[J]. Separation and Purification Technology, 2014, 133: 32-39. doi: 10.1016/j.seppur.2014.06.029
[16] WANG L, GU W, LIU Y, et al. Challenges, solutions and prospects of mainstream anammox-based process for municipal wastewater treatment[J]. Science of The Total Environment, 2022, 820: 153351.
[17] JIN R C, YANG G F, YU J J, et al. The inhibition of the Anammox process: A review[J]. Chemical engineering journal, 2012, 197: 67-79. doi: 10.1016/j.cej.2012.05.014
[18] GRAAFF M S D, TEMMINK H, ZEEMAN G, et al. Autotrophic nitrogen removal from black water: Calcium addition as a requirement for settleability[J]. Water Research, 2011, 45(1): 63-74. doi: 10.1016/j.watres.2010.08.010
[19] MA H, ZHANG Y, XUE Y, et al. A new process for simultaneous nitrogen removal and phosphorus recovery using an anammox expanded bed reactor[J]. Bioresource Technology, 2018, 267: 201-208. doi: 10.1016/j.biortech.2018.07.044
[20] ZHANG Y, MA H, LIN L, et al. Enhanced simultaneous nitrogen and phosphorus removal performance by anammox–HAP symbiotic granules in the attached film expanded bed reactor[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10989-10998.
[21] 国家环境保护总局. 水和废水监测分析方法[M]. (第4版).  北京:  中国环境科学出版社, 2002.
[22] 夏凡, 任龙飞. 新型厌氧氨氧化工艺在高含氮废水处理中的应用[J].  水处理技术, 2020, 46(9): 19-23.
[23] WANG S, LIU L, LI H, et al. The branched chains and branching degree of exopolysaccharides affecting the stability of anammox granular sludge[J]. Water Research, 2020, 178: 115818. doi: 10.1016/j.watres.2020.115818
[24] KAEWYAI J, NOOPHAN P L, WANTAWIN C, et al. Recovery of enriched anammox biofilm cultures after storage at cold and room temperatures for 164 days[J]. International Biodeterioration & Biodegradation, 2019, 137: 1-7.
[25] ALI M, OSHIKI M, OKABE S. Simple, rapid and effective preservation and reactivation of anaerobic ammonium oxidizing bacterium “Candidatus Brocadia sinica”[J]. Water Research, 2014, 57: 215-222. doi: 10.1016/j.watres.2014.03.036
[26] PHANWILAI S, WANTAWIN C, TERADA A, et al. Resuscitation of starved suspended-and attached-growth anaerobic ammonium oxidizing bacteria with and without acetate[J]. Water Science and Technology, 2017, 75(1): 115-127. doi: 10.2166/wst.2016.483
[27] KANG D, ZHENG P, LI W, et al. Stratification patterns of anammox granular sludge bed: Linking particle size distribution to microbial activity and community[J]. Environmental Research, 2022, 210: 112763.
[28] The Perfect Slime: Microbial Extracellular Polymeric Substances (EPS)[M]. London: IWA Publishing, 2016.
[29] WINGENDER J, NEU T R, FLEMMING H C. Microbial Extracellular Polymeric Substances[M]. Berlin Heidelberg: Springer, 1999.
[30] MANAS A, SPERANDIO M, DECKER F, et al. Location and chemical composition of microbially induced phosphorus precipitates in anaerobic and aerobic granular sludge[J]. Environmental Technology, 2012, 33(19): 2195-2209. doi: 10.1080/09593330.2012.696719
[31] GUO Y, QIAN Y, SHEN J, et al. The startup of the partial nitritation/anammox-hydroxyapatite process based on reconciling biomass and mineral to form the novel granule sludge[J]. Bioresource Technology, 2022, 347: 126692.
[32] MIAO L, ZHANG Q, WANG S, et al. Characterization of EPS compositions and microbial community in an Anammox SBBR system treating landfill leachate[J]. Bioresource Technology, 2018, 249: 108-116. doi: 10.1016/j.biortech.2017.09.151
[33] ADAMS M, XIE J, KABORE A J, et al. Research advances in anammox granular sludge: A review[J]. Critical Reviews in Environmental Science and Technology, 2020: 1-44.
[34] ZHANG Y, MA H, NIU Q, et al. Effects of substrate shock on extracellular polymeric substance (EPS) excretion and characteristics of attached biofilm anammox granules[J]. Royal Society of Chemistry, 2016, 6(114): 113289-113297.
[35] 李冬, 刘名扬, 张杰, 等. 厌氧氨氧化颗粒污泥的长期保藏及快速活性恢复[J].  环境科学, 2021,  42(6): 2957-2965.
[36] GAO D,  WANG X,  LIANG H,  et al. Anaerobic ammonia oxidizing bacteria:  ecological distribution, metabolism, and microbial interactions[J]. Frontiers of Environmental Science & Engineering, 2018, 12(3): 1-15.
[37] 蒙小俊, 龚晓松, 王秋利. 主流城镇污水处理厂厌氧氨氧化菌多样性分析[J/OL]. 工业水处理:  1-11 [2021-09-28]. http://kns.cnki.net/kcms/detail/12.1087.TQ.20210812.1039.006.html.
[38] KUENEN J G, JETTEN M. Extraordinary anaerobic ammonium-oxidizing bacteria[J]. ASM news, 2001, 67(9): 456-463.
[39] 曹雁, 王桐屿, 秦玉洁, 等. 厌氧氨氧化反应器脱氮性能及细菌群落多样性分析[J]. 环境科学, 2017, 38(4): 1544-1550.
[40] 姜滢, 郭萌蕾, 谢军祥, 等. 不同培养条件厌氧氨氧化颗粒污泥性质及微生物群落结构差异[J]. 环境科学, 2020, 41(5): 2358-2366.