[1] |
LEHMANN J. A handful of carbon [J]. Nature, 2007, 447(7141): 143-144. doi: 10.1038/447143a
|
[2] |
CHEN Q, ZHENG J, ZHENG L, et al. Classical theory and electron-scale view of exceptional Cd(Ⅱ) adsorption onto mesoporous cellulose biochar via experimental analysis coupled with DFT calculations [J]. Chemical Engineering Journal, 2018, 350: 1000-1009. doi: 10.1016/j.cej.2018.06.054
|
[3] |
LEHMANN J, DA SILVA J P, STEINER C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments [J]. Plant and Soil, 2003, 249(2): 343-357. doi: 10.1023/A:1022833116184
|
[4] |
CHU G, ZHAO J, HUANG Y, et al. Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores [J]. Environmental Pollution, 2018, 240: 1-9. doi: 10.1016/j.envpol.2018.04.003
|
[5] |
KOLB S E, FERMANICH K J, DORNBUSH M E. Effect of charcoal quantity on microbial biomass and activity in temperate soils [J]. Soil Science Society of America Journal, 2009, 73(4): 1173-1181. doi: 10.2136/sssaj2008.0232
|
[6] |
SUN J, HE F, PAN Y, et al. Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types [J]. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 2017, 67(1): 12-22.
|
[7] |
NOVAK J M, BUSSCHER W J, LAIRD D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil [J]. Soil Science, 2009, 174(2): 105-112. doi: 10.1097/SS.0b013e3181981d9a
|
[8] |
CHUN Y, SHENG G Y, CHIOU C T, et al. Compositions and sorptive properties of crop residue-derived chars [J]. Environmental Science & Technology, 2004, 38(17): 4649-4655.
|
[9] |
KIM K H, KIM J Y, CHO T S, et al. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida) [J]. Bioresource Technology, 2012, 118: 158-162. doi: 10.1016/j.biortech.2012.04.094
|
[10] |
MENDEZ A, TARQUIS A M, SAA-REQUEJO A, et al. Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil [J]. Chemosphere, 2013, 93(4): 668-676. doi: 10.1016/j.chemosphere.2013.06.004
|
[11] |
CAO X, MA L, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine [J]. Environmental Science & Technology, 2009, 43(9): 3285-3291.
|
[12] |
LU H, ZHANG W, YANG Y, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar [J]. Water Research, 2012, 46(3): 854-862. doi: 10.1016/j.watres.2011.11.058
|
[13] |
YANG J, PAN B, LI H, et al. Degradation of p-nitrophenol on biochars: Role of persistent free radicals [J]. Environmental Science & Technology, 2016, 50(2): 694-700.
|
[14] |
CHEN G, ZHANG Z, ZHANG Z, et al. Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures [J]. Science of the Total Environment, 2018, 615: 1547-1556. doi: 10.1016/j.scitotenv.2017.09.125
|
[15] |
DELLINGER B, LONINICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals [J]. Proceedings of the Combustion Institute, 2007, 31: 521-528. doi: 10.1016/j.proci.2006.07.172
|
[16] |
LOMNICKI S, TRUONG H, VEJERANO E, et al. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter [J]. Environmental Science & Technology, 2008, 42(13): 4982-4988.
|
[17] |
马超然, 张绪超, 王朋, 等. 生物炭理化性质对其反应活性的影响 [J]. 环境化学, 2019, 11: 2425-2434.
MA C Y, ZHANG X C, WANG P, et al. Effect of physical anf chemical properties of biochar on its reactivity [J]. Environmental Chemistry, 2019, 11: 2425-2434(in Chinese).
|
[18] |
FANG G, GAO J, LIU C, et al. Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation [J]. Environmental Science & Technology, 2014, 48(3): 1902-1910.
|
[19] |
YU L, YUAN Y, TANG J, et al. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens [J]. Sci Rep, 2015(5): 16221.
|
[20] |
WU D, LI F, CHEN Q, et al. Mediation of Rhodamine B photodegradation by biochar [J]. Chemosphere, 2020, 256: 127082. doi: 10.1016/j.chemosphere.2020.127082
|
[21] |
YU X, GONG W, LIU X, et al. The use of carbon black to catalyze the reduction of nitrobenzenes by sulfides [J]. Journal of Hazardous Materials, 2011, 198: 340-346. doi: 10.1016/j.jhazmat.2011.10.052
|
[22] |
ZHANG C, KATAYAMA A. Humin as an electron mediator for microbial reductive dehalogenation [J]. Environmental Science & Technology, 2012, 46(12): 6575-6583.
|
[23] |
QIN Y, ZHANG L, AN T. Hydrothermal carbon-mediated fenton-like reaction mechanism in the degradation of alachlor: Direct electron transfer from hydrothermal carbon to Fe(Ⅲ) [J]. Acs Applied Materials & Interfaces, 2017, 9(20): 17116-17125.
|
[24] |
OH S Y, SON J G, CHIU P C. Biochar-mediated reductive transformation of nitro herbicides and explosives [J]. Environmental Toxicology and Chemistry, 2013, 32(3): 501-508. doi: 10.1002/etc.2087
|
[25] |
ZHU D Q, KWON S, PIGNATELLO J J. Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions [J]. Environmental Science & Technology, 2005, 39(11): 3990-3998.
|
[26] |
ZHANG G, ZHANG Q, SUN K, et al. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures [J]. Environmental Pollution, 2011, 159(10): 2594-2601. doi: 10.1016/j.envpol.2011.06.012
|
[27] |
CHEN B, ZHOU D, ZHU L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures [J]. Environmental Science & Technology, 2008, 42(14): 5137-5143.
|
[28] |
OH S Y, SON J G, HUR S H, et al. Black carbon-mediated reduction of 2,4-dinitrotoluene by dithiothreitol [J]. Journal of Environmental Quality, 2013, 42(3): 815-821. doi: 10.2134/jeq2012.0411
|
[29] |
YANG K, JIANG Y, YANG J, et al. Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 degrees C [J]. Environmental Pollution, 2018, 233: 64-70. doi: 10.1016/j.envpol.2017.10.035
|
[30] |
CHEN B, CHEN Z. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures [J]. Chemosphere, 2009, 76(1): 127-133. doi: 10.1016/j.chemosphere.2009.02.004
|
[31] |
CHEN T, ZHANG Y, WANG H, et al. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge [J]. Bioresource Technology, 2014, 164: 47-54. doi: 10.1016/j.biortech.2014.04.048
|
[32] |
CHEFETZ B, BILKIS Y I, POLUBESOVA T. Sorption-desorption behavior of triazine and phenylurea herbicides in Kishon river sediments [J]. Water Research, 2004, 38(20): 4383-4394. doi: 10.1016/j.watres.2004.08.023
|
[33] |
PARK J H, WANG J J, ZHOU B, et al. Removing mercury from aqueous solution using sulfurizedbiochar and associated mechanisms [J]. Environmental Pollution, 2019, 244: 627-635. doi: 10.1016/j.envpol.2018.10.069
|
[34] |
CAO X, HARRIS W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation [J]. Bioresource Technology, 2010, 101(14): 5222-5228. doi: 10.1016/j.biortech.2010.02.052
|
[35] |
UCHIMIYA M, KLASSON K T, WARTELLE L H, et al. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations [J]. Chemosphere, 2011, 82(10): 1431-1417. doi: 10.1016/j.chemosphere.2010.11.050
|
[36] |
HARVEY O R, HERBERT B E, RHUE R D, et al. Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry [J]. Environmental Science & Technology, 2011, 45(13): 5550-5556.
|
[37] |
LIAN F, XING B. Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk [J]. Environmental Science & Technology, 2017, 51(23): 13517-13532.
|
[38] |
WU C, LIU X, WU X, et al. Sorption, degradation and bioavailability of oxyfluorfen in biochar-amended soils [J]. Science of the Total Environment, 2019, 658: 87-94. doi: 10.1016/j.scitotenv.2018.12.059
|
[39] |
LIAO S, PAN B, LI H, et al. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings [J]. Environmental Science & Technology, 2014, 48(15): 8581-8587.
|
[40] |
YANG J, PIGNATELLO J J, PAN B, et al. Degradation of p-nitrophenol by lignin and cellulose chars: H2O2-mediated reaction and direct reaction with the char [J]. Environmental Science & Technology, 2017, 51(16): 8972-8980.
|
[41] |
SAQUING J M, YU Y H, PEI C C. Wood-derived black carbon (biochar) as a microbial electron donor and acceptor [J]. 2016, 3(2): 62-66.
|
[42] |
KEMPER J M, AMMAR E, MITCH W A. Abiotic degradation of hexahydro-l,3,5-trinitro-1,3,5-triazine in the presence of hydrogen sulfide and black carbon [J]. Environmental Science & Technology, 2008, 42(6): 2118-2123.
|
[43] |
ZEE F P V D, BISSCHOPS I A E, LETTINGA G, et al. Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes [J]. Environmental Science & Technology, 2003, 37(2): 402-408.
|
[44] |
SUN T, LEVIN B D A, GUZMAN J J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon [J]. Nature Communications, 2017(8): 14873.
|
[45] |
REN S, USMAN M, TSANG D C W, et al. Hydrochar-facilitated anaerobic digestion: Evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups [J]. Environmental Science & Technology, 2020, 54(9): 5755-5766.
|
[46] |
FANG G, LIU C, GAO J, et al. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation [J]. Environmental Science & Technology, 2015, 49(9): 5645-5653.
|
[47] |
QIU Y, ZHENG Z, ZHOU Z, et al. Effectiveness and mechanisms of dye adsorption on a straw-based biochar [J]. Bioresource Technology, 2009, 100(21): 5348-5351. doi: 10.1016/j.biortech.2009.05.054
|
[48] |
XU R K, XIAO S C, YUAN J H, et al. Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues [J]. Bioresource Technology, 2011, 102(22): 10293-10298. doi: 10.1016/j.biortech.2011.08.089
|
[49] |
FANG G, LIU C, WANG Y, et al. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation [J]. Applied Catalysis B-Environmental, 2017, 214: 34-45. doi: 10.1016/j.apcatb.2017.05.036
|
[50] |
CHEN C Y, JAFVERT C T. The role of surface functionalization in the solar light-induced production of reactive oxygen species by single-walled carbon nanotubes in water [J]. Carbon, 2011, 49(15): 5099-5106. doi: 10.1016/j.carbon.2011.07.029
|
[51] |
GASKIN J W, STEINER C, HARRIS K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use [J]. Transactions of the Asabe, 2008, 51(6): 2061-2069. doi: 10.13031/2013.25409
|
[52] |
YUAN J H, XU R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol [J]. Soil Use and Management, 2011, 27(1): 110-115. doi: 10.1111/j.1475-2743.2010.00317.x
|
[53] |
XIAO X, CHEN B L, ZHU L Z. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures [J]. Environmental Science & Technology, 2014, 48(6): 3411-3419.
|
[54] |
JIN J W, LI Y N, ZHANG J Y, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge [J]. Journal of Hazardous Materials, 2016, 320: 417-426. doi: 10.1016/j.jhazmat.2016.08.050
|
[55] |
WANG Z, HAN L, SUN K, et al. Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures [J]. Chemosphere, 2016, 144: 285-291. doi: 10.1016/j.chemosphere.2015.08.042
|
[56] |
DEMIRBAS A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues [J]. Journal of Analytical and Applied Pyrolysis, 2004, 72(2): 243-248. doi: 10.1016/j.jaap.2004.07.003
|
[57] |
LIU W J, LI W W, JIANG H, et al. Fates of chemical elements in biomass during its pyrolysis [J]. Chem Rev, 2017, 117(9): 6367-6398. doi: 10.1021/acs.chemrev.6b00647
|
[58] |
BEESLEY L, MORENO-JIMENEZ E, GOMEZ-EYLES J L, et al. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils [J]. Environmental Pollution, 2011, 159(12): 3269-3282. doi: 10.1016/j.envpol.2011.07.023
|
[59] |
CHU G, ZHAO J, CHEN F, et al. Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation [J]. Environmental Pollution, 2017, 227: 372-379. doi: 10.1016/j.envpol.2017.04.067
|
[60] |
LUQUE R, MENENDEZ J A, ARENILLAS A, et al. Microwave-assisted pyrolysis of biomass feedstocks: the way forward? [J]. Energy & Environmental Science, 2012, 5(2): 5481-5488.
|
[61] |
MENENDEZ J A, DOMINGUEZ A, FERNANDEZ Y, et al. Evidence of self-gasification during the microwave-induced pyrolysis of coffee hulls [J]. Energy & Fuels, 2007, 21(1): 373-378.
|
[62] |
MUMME J, ECKERVOGT L, PIELERT J, et al. Hydrothermal carbonization of anaerobically digested maize silage [J]. Bioresource Technology, 2011, 102(19): 9255-9260. doi: 10.1016/j.biortech.2011.06.099
|
[63] |
AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review [J]. Chemosphere, 2014, 99: 19-33. doi: 10.1016/j.chemosphere.2013.10.071
|
[64] |
DEMIRBAS A, ARIN G. An overview of biomass pyrolysis [J]. Energy Sources, 2002, 24(5): 471-482. doi: 10.1080/00908310252889979
|
[65] |
KLÜPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon (biochar) [J]. Environmental Science & Technology, 2014, 48(10): 5601-5611.
|
[66] |
SUN K, KEILUWEIT M, KLEBER M, et al. Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure [J]. Bioresource Technology, 2011, 102(21): 9897-9903. doi: 10.1016/j.biortech.2011.08.036
|
[67] |
林庆毅, 姜存仓, 张梦阳. 生物炭老化后理化性质及微观结构的表征 [J]. 环境化学, 2017, 36(10): 2107-2114. doi: 10.7524/j.issn.0254-6108.2017021703
LIN Q Y, QIANG C C, ZHANG M Y. Characterization of the physical and chemical structures of biochar under simulated aging condition [J]. Environmental Chemistry, 2017, 36(10): 2107-2114(in Chinese). doi: 10.7524/j.issn.0254-6108.2017021703
|
[68] |
黄兆琴, 胡林潮, 程德义, 等. 化学老化后稻壳生物炭理化性质的改变及微观结构表征 [J]. 环境化学, 2019, 8: 1735-1744. doi: 10.7524/j.issn.0254-6108.2018101605
HUANG Z Q, HU L C, CHENG D Y, et al. Characterization of physicochemical properties and microstructure of rice husk-derived biochar after chemical aging [J]. Environmental Chemistry, 2019, 8: 1735-1744(in Chinese). doi: 10.7524/j.issn.0254-6108.2018101605
|
[69] |
QIN W, WANG Y, FANG G, et al. Evidence for the generation of reactive oxygen species from hydroquinone and benzoquinone: Roles in arsenite oxidation [J]. Chemosphere, 2016, 150: 71-78. doi: 10.1016/j.chemosphere.2016.01.119
|
[70] |
ZHANG P, ZHENG S, LIU J, et al. Surface properties of activated sludge-derived biochar determine the facilitating effects on Geobacter co-cultures [J]. Water Research, 2018, 142: 441-451. doi: 10.1016/j.watres.2018.05.058
|
[71] |
YU L, WANG Y, YUAN Y, et al. Biochar as electron acceptor for microbial extracellular respiration [J]. Geomicrobiology Journal, 2016, 33(6): 530-536. doi: 10.1080/01490451.2015.1062060
|