[1] |
SUN S P, C P I N, BRIAN MERKEY, et al. Effective biological nitrogen removal treatment processes for domestic wastewaters with low C/N ratios: A review[J]. Environmental Engineering Science, 2010, 27(2): 111-126. doi: 10.1089/ees.2009.0100
|
[2] |
刘春, 王聪聪, 陈晓轩, 等. 微气泡曝气生物膜反应器处理低C/N比废水脱氮过程[J]. 环境科学, 2019, 40(2): 754-760.
|
[3] |
巩秀珍, 于德爽, 袁梦飞, 等. 后置短程反硝化AOA-SBR工艺实现低C/N城市污水的脱氮除磷[J]. 环境科学, 2019, 40(1): 360-368.
|
[4] |
YUAN, HE, YU H, et al. High-effective denitrification of low C/N wastewater by combined constructed wetland and biofilm-electrode reactor (CW–BER)[J]. Bioresource Technology, 2016, 203: 245-251. doi: 10.1016/j.biortech.2015.12.060
|
[5] |
LI W, LIN Y, WU L, et al. Enhanced nitrogen removal of low C/N wastewater using a novel microbial fuel cell (MFC) with Cupriavidus sp. S1 as a biocathode catalyst (BCS1)[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(4): 1203-1215.
|
[6] |
DENG L, NGO H H, GUO W, et al. Evaluation of a new sponge addition-microbial fuel cell system for removing nutrient from low C/N ratio wastewater[J]. Chemical Engineering Journal, 2018: 166-175.
|
[7] |
邢金良, 张岩, 陈昌明, 等. CEM-UF组合膜-硝化/反硝化系统处理低C/N废水及种群结构分析[J]. 环境科学, 2018, 39(3): 1342-1349.
|
[8] |
YUAN C, ZHAO F, ZHAO X, et al. Woodchips as sustained-release carbon source to enhance the nitrogen transformation of low C/N wastewater in a baffle subsurface flow constructed wetland[J]. Chemical Engineering Journal, 2020, 392: 124840. doi: 10.1016/j.cej.2020.124840
|
[9] |
ZHOU X, CHENG L, LIANG, et al. An innovative biochar-amended substrate vertical flow constructed wetland for low C/N wastewater treatment: Impact of influent strengths[J]. Bioresource Technology, 2018, 247: 844-850. doi: 10.1016/j.biortech.2017.09.044
|
[10] |
GUAN L, HAIBUAN, PENG, et al. Enhanced nitrogen removal of low C/N wastewater in constructed wetlands with co-immobilizing solid carbon source and denitrifying bacteria[J]. Bioresource Technology, 2019, 280: 337-344. doi: 10.1016/j.biortech.2019.02.043
|
[11] |
ZHOU X, LIANG C, JIA L, et al. An innovative biochar-amended substrate vertical flow constructed wetland for low C/N wastewater treatment: Impact of influent strengths[J]. Bioresource Technology, 2018, 247: 844-850. doi: 10.1016/j.biortech.2017.09.044
|
[12] |
XU W L, ZHANG W, JIAN Y, et al. Analysis of nitrogen removal performance of constructed rapid infiltration system (CRIS)[J]. Applied Ecology and Environmental Research, 2017, 15: 199-206. doi: 10.15666/aeer/1501_199206
|
[13] |
WANG M, ZHANG H. Chemical oxygen demand and ammonia nitrogen removal in a non-saturated layer of a strengthened constructed rapid infiltration system[J]. Water Air & Soil Pollution, 2017, 228(11): 440-441.
|
[14] |
FANG Q L, XU W L, XIA G H, et al. Effect of C/N ratio on the removal of nitrogen and microbial characteristics in the water saturated denitrifying section of a two-stage constructed rapid infiltration system[J]. International Journal of Environmental Research & Public Health, 2018, 15(7): 1469.
|
[15] |
CHEN J, LU Y, CHENG J, et al. Effect of starvation on the nitrification performance of constructed rapid infiltration systems[J]. Environmental Technology, 2019, 40(11): 1408-1417. doi: 10.1080/09593330.2017.1422554
|
[16] |
陈佼, 陆一新, 张建强, 等. CRI系统部分亚硝化的启动及菌群结构分析[J]. 环境科学与技术, 2019, 42(1): 72-79.
|
[17] |
SU C, ZHU X, SHI X, et al. Removal efficiency and pathways of phosphorus from wastewater in a modified constructed rapid infiltration system[J]. Journal of Cleaner Production, 2020, 267: 122063. doi: 10.1016/j.jclepro.2020.122063
|
[18] |
王茹, 赵治国, 郑平, 等. 铁型反硝化: 一种新型废水生物脱氮技术[J]. 化工进展, 2019, 38(4): 2003-2010.
|
[19] |
周丰, 王翻翻, 钱飞跃, 等. 纳米零价铁对升流式颗粒污泥床反硝化性能的影响[J]. 环境科学, 2018, 39(1): 263-268.
|
[20] |
ZHAO Y, SONG X, CAO X, et al. Modified solid carbon sources with nitrate adsorption capability combined with nZVI improve the denitrification performance of constructed wetlands[J]. Bioresource Technology, 2019, 294: 122189. doi: 10.1016/j.biortech.2019.122189
|
[21] |
ZHAO Y, XIN C, SONG X, et al. Montmorillonite supported nanoscale zero-valent iron immobilized in sodium alginate (SA/Mt-NZVI) enhanced the nitrogen removal in vertical flow constructed wetlands (VFCWs)[J]. Bioresource Technology, 2018, 267: 608-617. doi: 10.1016/j.biortech.2018.07.072
|
[22] |
VODYANITSKII Y N, MINEEV V G. Degradation of nitrates with the participation of Fe(II) and Fe(0) in groundwater: A review[J]. Eurasian Soil Science, 2015, 48(2): 139-147. doi: 10.1134/S1064229315020131
|
[23] |
李靖, 范明杰, 刘翔, 等. 双表面活性剂修饰下纳米零价铁对水中Cr(Ⅵ)污染去除研究[J]. 环境科学学报, 2019, 39(10): 212-219.
|
[24] |
JIAN H W, JUN Y, WEI H S, et al. Variation of TTC-ETS activity of activated sludge in SBR process[J]. Advanced Materials Research, 2011: 1328.
|
[25] |
JUN Y, JIA N L, JING Y C, et al. Study on the relationship between the activity change of CAT and INT-ETS in Different Sludge System by Using SBR Process[J]. Applied Mechanics and Materials, 2013: 2684.
|
[26] |
荣宏伟, 张耀坤, 张朝升, 等. INT-ETS活性及AUR和SOUR表征污泥活性的比较[J]. 环境科学研究, 2016, 29(5): 767-773.
|
[27] |
WANG J, YIN J, LU H, et al. Sludge microbial kinetics in organic matter biodegradation and nitrification based on ETS activity[J]. CIESC Journal, 2014, 65(2): 672-678.
|
[28] |
KIN C, KOOPMAN B, BITTON G. INT-dehydrogenase activity test for assessing chlorine and hydrogen peroxide inhibition of filamentous pure cultures and activated sludge[J]. Water Research, 1994, 28(5): 1117-1121. doi: 10.1016/0043-1354(94)90198-8
|
[29] |
ZHOU S, ZHANG Y, HUANG T, et al. Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun reservoir[J]. Science of the total environment, 2019, 651: 998-1010. doi: 10.1016/j.scitotenv.2018.09.160
|
[30] |
XU P, XIA E R, WU J M, et al. Enhanced nitrate reduction in water by a combined bio-electrochemical system of microbial fuel cells and submerged aquatic plant Ceratophyllum demersum.[J]. Journal of Environmental Sciences, 2019, 78: 338-351. doi: 10.1016/j.jes.2018.11.013
|
[31] |
DENG S, LI D, YANG X, et al. Biological denitrification process based on the Fe0–carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition[J]. Bioresource Technology, 2016, 219: 677-686. doi: 10.1016/j.biortech.2016.08.014
|
[32] |
WANG C, LIU S, XU X, et al. Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor[J]. Chemosphere, 2018, 203: 457-466. doi: 10.1016/j.chemosphere.2018.04.016
|
[33] |
MA B, WANG S, LI Z, et al. Magnetic Fe3O4 nanoparticles induced effects on performance and microbial community of activated sludge from a sequencing batch reactor under long-term exposure[J]. Bioresource Technology, 2017, 225: 377-385. doi: 10.1016/j.biortech.2016.11.130
|
[34] |
QIAN G, HU X, LI L, et al. Effect of iron ions and electric field on nitrification process in the periodic reversal bio-electrocoagulation system[J]. Bioresource Technology, 2017, 244: 382-390. doi: 10.1016/j.biortech.2017.07.155
|
[35] |
QIAO S, BI Z, ZHOU J, et al. Long term effects of divalent ferrous ion on the activity of anammox biomass[J]. Bioresource Technology, 2013, 142: 490-497. doi: 10.1016/j.biortech.2013.05.062
|
[36] |
SONG X, WANG S, WANG Y, et al. Addition of Fe2+ increase nitrate removal in vertical subsurface flow constructed wetlands[J]. Ecological Engineering, 2016, 91: 487-494. doi: 10.1016/j.ecoleng.2016.03.013
|
[37] |
OSHIKI M, ISHII S, YOSHIDA K, et al. Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (Anammox) Bacteria[J]. Applied and Environmental Microbiology, 2013, 79(13): 4087-4093. doi: 10.1128/AEM.00743-13
|
[38] |
叶星, 马凯迪, 黄俊生, 等. 反硝化生物滤池中生物膜量与脱氮效果和脱氢酶活性的关系[J]. 环境工程学报, 2020, 14(5): 1210-1215. doi: 10.12030/j.cjee.201907157
|
[39] |
IBRAHIM M, YUSOF N, YUSOFF M Z M, et al. Enrichment of anaerobic ammonium oxidation (anammox) bacteria for short start-up of the anammox process: a review[J]. Desalination and Water Treatment, 2015, 57(30): 13958-13978.
|
[40] |
SU J F, CHENG C, HUANG T L, et al. Novel simultaneous Fe(III) reduction and ammonium oxidation of Klebsiella sp. FC61 under the anaerobic conditions[J]. RSC Advances, 2016, 6(15).
|
[41] |
LIANG Y, WEI D, HU J, et al. Glyphosate and nutrients removal from simulated agricultural runoff in a pilot pyrrhotite constructed wetland[J]. Water Research, 2020, 168: 115-154.
|
[42] |
LIU T, LI X, ZHANG W, et al. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17[J]. Journal of Colloid & Interface Science, 2014, 423: 25-32.
|
[43] |
ZHAO Y, ZANG B, FENG C, et al. Behavior of autotrophic denitrification and heterotrophic denitrification in an intensified biofilm-electrode reactor for nitrate-contaminated drinking water treatment[J]. Bioresource Technology, 2012, 107: 159-165. doi: 10.1016/j.biortech.2011.12.118
|
[44] |
HAO R, MENG C, LI J. Impact of operating condition on the denitrifying bacterial community structure in a 3DBER-SAD reactor[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44: 99-21.
|