[1] |
LIU R, ZHENG X, LI M, et al. A three chamber bioelectro chemical system appropriate for in-situ remediation of nitrate-contaminated groundwater and its reaction mechanisms[J]. Water Research, 2019, 158: 401-410. doi: 10.1016/j.watres.2019.04.047
|
[2] |
WANG C, LIU Y, LV W, et al. Enhancement of nitrogen removal by supplementing fluidized-carriers into the aerobic tank in a full-scale A (2)/O system[J]. Science of the Total Environment, 2019, 660: 817-825. doi: 10.1016/j.scitotenv.2019.01.046
|
[3] |
CUI B, YANG Q, ZHANG Y, et al. Improving nitrogen removal in biological aeration filter for domestic sewage treatment via adjusting microbial community structure[J]. Bioresource Technology, 2019, 293: 122006. doi: 10.1016/j.biortech.2019.122006
|
[4] |
LI C, LIU S, MA T, et al. Simultaneous nitrification, denitrification and phosphorus removal in a sequencing batch reactor (SBR) under low temperature[J]. Chemosphere, 2019, 229: 132-141. doi: 10.1016/j.chemosphere.2019.04.185
|
[5] |
SONG Z, ZHANG X, NGO H H, et al. Zeolite powder based polyurethane sponges as biocarriers in moving bed biofilm reactor for improving nitrogen removal of municipal wastewater[J]. Science of the Total Environment, 2019, 651: 1078-1086. doi: 10.1016/j.scitotenv.2018.09.173
|
[6] |
EROL A, AVSEGUL U M. Chitosan based metal-chelated copolymer nanoparticles: laccase immobilization and phenol degradation studies[J]. International Biodeterioration & Biodegradation, 2017, 125: 235-242.
|
[7] |
TING A S Y, RAHMAN N H A, ISA M I H M, et al. Investigating metal removal potential by Effective Microorganisms (EM) in alginate-immobilized and free-cell forms[J]. Bioresource Technology, 2013, 147: 636-639. doi: 10.1016/j.biortech.2013.08.064
|
[8] |
VANOTTI M B, HUNT P G. Nitrification treatment of swine wastewater with acclimated nitrifying sludge immobilixed in polymer pellet[J]. Transactions of the ASABE, 2000, 43(2): 405-413. doi: 10.13031/2013.2719
|
[9] |
王得梁, 杨家鹏, 黄碧捷, 等. 活体微生物及磁分离技术在重金属废水处理中的应用[J]. 绿色科技, 2020, 24: 68-70. doi: 10.3969/j.issn.1674-9944.2020.24.022
|
[10] |
王青, 张善锋. The Application of Immobilized Microorganism Technology in Wastewater Treatment[J]. 环境科学与管理, 2008, 33(11): 81-84. doi: 10.3969/j.issn.1673-1212.2008.11.021
|
[11] |
王真真, 李文哲, 公维佳. 以活性炭纤维为载体厌氧处理牛粪的实验研究[J]. 农机化研究, 2008, 4(2): 207-210. doi: 10.3969/j.issn.1003-188X.2008.02.063
|
[12] |
练文标, 潘凤开. 生物活性炭废水处理工艺研究[J]. 广东化工, 2018, 45(6): 165-166. doi: 10.3969/j.issn.1007-1865.2018.06.072
|
[13] |
WU F C, TSENG R L, JUANG R S. Adsorption of dyes and phenols from water on the activated carbons prepared from corncob wastes[J]. Environmental Technology, 2001, 22(2): 205-213. doi: 10.1080/09593332208618296
|
[14] |
LIN Q, VRIEZE J D, LI C N, et al. Temperature regulates deterministic processes and the succession of microbial interactions in anaerobic digestion process[J]. Water Research, 2017, 123: 134-143. doi: 10.1016/j.watres.2017.06.051
|
[15] |
MOHAMMADI S, KARGARI A, SANAEEPUR H, et al. Phenol removal from industrial wastewaters: A short review[J]. Desalination and Water Treatment, 2015, 53(8): 2215-2234. doi: 10.1080/19443994.2014.883327
|
[16] |
LEONG M L, LEE K M, MAKINIA J, et al. Characteristics and fate of organic nitrogen in municipal biological nutrient removal wastewater treatment plants[J]. Water Research, 2012, 46(7): 2057-2066. doi: 10.1016/j.watres.2012.01.020
|
[17] |
WANG X, WEN X, CRIDDLE C, et al. Community analysis of ammonia-oxidizing bacteria in activated sludge of eight wastewater treatment systems[J]. Journal of Environmental Sciences, 2010, 22(4): 627-634. doi: 10.1016/S1001-0742(09)60155-8
|
[18] |
国家环境保护总局. 水和废水监测分析方法(第4版)[M]. 北京: 中国环境科学出版社, 2009.
|
[19] |
钱玉兰, 李燕, 乔椋, 等. 无机絮凝剂对SBR系统中活性污泥的影响研究[J]. 中国环境科学, 2020, 40(6): 2445-2453. doi: 10.3969/j.issn.1000-6923.2020.06.014
|
[20] |
HUANG J, SONG Y L, WANG X H, et al. Analysis of the microbial community differences between suspending sludge and biofilm in contact-oxidation tank for dyeing wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3241-3246.
|
[21] |
王彬浩. 活性污泥降解氟化工废水的影响因素及微生物群落结构的动态变化研究[D]. 杭州: 杭州师范大学, 2017.
|
[22] |
FENG L, CHEN K, HAN D, et al. Comparison of nitrogen removal and microbial properties in solid-phase denitrification systems for water purification with various pretreated lignocellulosic carriers[J]. Bioresource Technology, 2017b, 224: 236-245. doi: 10.1016/j.biortech.2016.11.002
|
[23] |
杨豪, 信欣, 曹惜霜, 等. 磁性活性炭强化SBR脱氮除磷及微生物种群分析[J]. 中国环境科学, 2021, 41(3): 1199-1207. doi: 10.3969/j.issn.1000-6923.2021.03.023
|
[24] |
Sun Chenxiang, Zhang Bing, Chen Zhan, et al. Sludge retention time affects the microbial community structure: A largescale sampling of aeration tanks throughout China[J]. Environmental Pollution, 2020, 261: 114140. doi: 10.1016/j.envpol.2020.114140
|
[25] |
李健, 郭烨烨, 王霞, 梁爽, 张宜峤. 活性炭提高膜生物反应器运行性能的研究进展[J]. 水处理技术, 2021, 47(1): 7-11.
|
[26] |
YANG W, PAETKAU M, CICEKN. Improving the performance of membrane bioreactors by powdered activated carbon dosing with cost considerations[J]. Water Science and Technology, 2010, 62: 172-179. doi: 10.2166/wst.2010.276
|
[27] |
KAYA Y, BACAKSIZ A M, GOLEBATMAZ U, et al. Improving the performance of an aerobic membrane bioreactor (MBR) treating pharmaceutical wastewater with powdered activated carbon (PAC) addition[J]. Bioprocess and Biosystems Engineering, 2016, 39: 661-676. doi: 10.1007/s00449-016-1547-3
|
[28] |
WANG S, MA C, PANG C, et al. Membrane fouling and performance of anaerobic ceramic membrane bioreactor treating phenol- and quinoline-containing wastewater: Granular activated carbon vs polyaluminum chloride[J]. Environmental Science and Pollution Research, 2018.
|
[29] |
信欣, 管蕾, 郭俊元, 等. SBR加载不同粒径磁性活性炭对其污泥颗粒化进程的影响机制[J]. 环境科学, 2017, 38(11): 4679-4686.
|
[30] |
陈婧. 沸石序批式反应器的亚硝化及其低碳脱氮研究[D]. 广州: 华南理工大学, 2019.
|
[31] |
伍昌年, 凌琪, 唐玉朝, 等. 改性粉煤灰强化SBR工艺处理污水实验研究[J]. 应用化工, 2017, 46(6): 1071-1073. doi: 10.3969/j.issn.1671-3206.2017.06.011
|
[32] |
李青, 成小英. 不同填料生物反应器中脱氮微生物群落比较分析[J]. 安全与环境学报, 2017, 17(6): 2360-2365.
|
[33] |
张春雷, 王东升, 樊康平, 等. 活性炭滤池中微生物特征及其对溶解性有机碳的去除作用[J]. 环境科学学报, 2009, 29(11): 2267-2273.
|
[34] |
FENG L, JIA R, ZENG Z, et al. Simultaneous nitrification-denitrification and microbial community profile in an oxygen-limiting intermittent aeration SBBR with biodegradable carriers[J]. Biodegradation, 2018, 29(5): 473-486. doi: 10.1007/s10532-018-9845-x
|
[35] |
FEYEREISEN G W, CHRISTIANSON L E, MOORMAN T B, et al. Plastic biofilm carrier after corn cobs reduces nitrate loading in laboratory denitrifying bioreactors[J]. Journal of Environmental Quality, 2017, 46(4): 915-920. doi: 10.2134/jeq2017.02.0060
|
[36] |
BAO T, CHEN T H, TAN J, et al. Synthesis and performance of iron oxide-based porous ceramsite in a biological aerated filter for the simultaneous removal of nitrogen and phosphorus from domestic wastewater[J]. Separation & Purification Technology, 2016, 167: 154-162.
|
[37] |
YU H Q. Molecular insights into extracellular polymeric substances in activated sludge[J]. Environmental Science & Technology, 2020, 54(13): 7742-7750.
|
[38] |
CHENG Y, LI G, LIU Y, et al. Evaluating the effects of Zn (II) on high-rate biogranule-based denitrification: Performance, microbial community and sludge characteristics[J]. Bioresource Technology, 2019, 279: 393-397. doi: 10.1016/j.biortech.2019.02.005
|
[39] |
TIAN W H, LI W, HUI L, et al. Characterization of sulfate-reducing granular sludge in the SANI((R)) process[J]. Water Research, 2013, 47(19): 7042-7052. doi: 10.1016/j.watres.2013.07.052
|
[40] |
CHAALI M, NAGHDI M, BRAR S K, et al. A review on the advances in nitrifying biofilm reactors and their removal rates in wastewater treatment[J]. Journal of Chemical Technology and Biotechnology, 2018, 93(11): 3113-3124. doi: 10.1002/jctb.5692
|
[41] |
GAN Y, ZHAO Q, YE Z. Denitrification performance and microbial diversity of immobilized bacterial consortium treating nitrate micro-polluted water[J]. Bioresource Technology, 2019, 281: 351-358. doi: 10.1016/j.biortech.2019.02.111
|
[42] |
LU H, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64(1): 237-254.
|
[43] |
SANDIP M, KALYANRAMAN V. Enhanced simultaneous nitri-denitrification in aerobic moving bed biofilm reactor containing polyurethane foam-based carrier media[J]. Water Science and Technology, 2019, 79(3): 510-517. doi: 10.2166/wst.2019.077
|
[44] |
WANG Y, ZHANG X, ZHANG X, et al. Characterization of spectral responses of dissolved organic matter (DOM) for atrazine binding during the sorption process onto black soil[J]. Chemosphere, 2017, 180: 531-539. doi: 10.1016/j.chemosphere.2017.04.063
|
[45] |
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
|
[46] |
唐书娟, 王志伟, 吴志超, 等. 膜-生物反应器中溶解性有机物的三维荧光分析[J]. 中国环境科学, 2009, 29(3): 290-295. doi: 10.3321/j.issn:1000-6923.2009.03.012
|
[47] |
XU Z, CHAI X. Effect of weight ratios of PHBV/PLA polymer blends on nitrate removal efficiency and microbial community during solid-phase denitrification[J]. International Biodeterioration & Biodegradation, 2017, 116: 175-183.
|
[48] |
VIJAY A, CHHABRA M, VINCENT T. Microbial community modulates electrochemical performance and denitrification rate in a biocathodic autotrophic and heterotrophic denitrifying microbial fuel cell[J]. Bioresource Technology, 2019, 272: 217-225. doi: 10.1016/j.biortech.2018.10.030
|
[49] |
LI J, LI D, CUI Y, et al. Micro-electrolysis/retinervus luffae-based simultaneous autotrophic and heterotrophic denitrification for low C/N wastewater treatment[J]. Environmental Science and Pollution Research, 2017, 24(20): 16651-16658. doi: 10.1007/s11356-017-9179-y
|
[50] |
GABARRO J, GONZALEZ C P, RUSCALLEDA M, et al. Anoxic phases are the main N2O contributor in partial nitritation reactors treating high nitrogen loads with alternate aeration[J]. Bioresource Technology, 2014, 163: 92-99. doi: 10.1016/j.biortech.2014.04.019
|
[51] |
ZHANG X, LI D, LIANG Y, et al. Autotrophic nitrogen removal from domestic sewage in MBR-CANON system and the biodiversity of functional microbes[J]. Bioresource Technology, 2013, 150: 113-120. doi: 10.1016/j.biortech.2013.09.067
|
[52] |
蔺凌云, 尹文林, 潘晓艺, 等. 自然微生物挂膜处理水产养殖废水的效果及微生物群落分析[J]. 水生生物学报, 2017, 41(6): 163-171.
|
[53] |
HU Z, LIU J, ZHENG W, et al. Highly-efficient nitrogen removal from domestic wastewater based on enriched aerobic/anoxic biological filters and functional microbial community characteristics[J]. Journal of Cleaner Production, 2019, 238: 117867. doi: 10.1016/j.jclepro.2019.117867
|
[54] |
DONG H, WANG W, SONG Z, et al. A high-efficiency denitrification bioreactor for the treatment of acrylonitrile wastewater using waterborne polyurethane immobilized activated sludge[J]. Bioresource Technology, 2017, 239: 472-481. doi: 10.1016/j.biortech.2017.05.015
|
[55] |
ASHRAFI E, ALLAHYARI E, TORRESI E, et al. Effect of slow biodegradable substrate addition on biofilm structure and reactor performance in two MBBRs filled with different support media[J]. Environmental Technology, 2019: 1-10.
|
[56] |
FENG L, JIA R, SUN J Y, et al. Response of performance and bacterial community to oligotrophic stress in biofilm systems for raw water pretreatment[J]. Biodegradation, 2017a, 28(4): 231-244. doi: 10.1007/s10532-017-9792-y
|