[1] |
KUMMERER K. Antibiotics in the aquatic environment: A review-part I[J]. Chemosphere, 2009, 75(4): 417-434. doi: 10.1016/j.chemosphere.2008.11.086
|
[2] |
TERNES T A, PRASSE C, EVERSLOH C L, et al. Integrated evaluation concept to assess the efficacy of advanced wastewater treatment processes for the elimination of micropollutants and pathogens[J]. Environmental Science & Technology, 2017, 51(1): 308-319.
|
[3] |
JIA A, WAN Y, XIAO Y, et al. Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant[J]. Water Research, 2012, 46(2): 387-394. doi: 10.1016/j.watres.2011.10.055
|
[4] |
KUMMERER K, HENNINGER A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent[J]. Clinical Microbiology and Infection, 2003, 9(12): 1203-1214. doi: 10.1111/j.1469-0691.2003.00739.x
|
[5] |
PETRIE B, BARDEN R, KASPRZYK-HORDERN B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring[J]. Water Research, 2015, 72: 3-27. doi: 10.1016/j.watres.2014.08.053
|
[6] |
LIENERT J, GÜDEL K, ESCHER B I. Screening method for ecotoxicological hazard assessment of 42 pharmaceuticals considering human metabolism and excretory routes[J]. Environmental Science & Technology, 2007, 41(12): 4471-4478.
|
[7] |
LIU C, NANABOINA V, KORSHIN G V, et al. Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater[J]. Water Research, 2012, 46(16): 5235-5246. doi: 10.1016/j.watres.2012.07.005
|
[8] |
LI G, PARK S, KANG D W, et al. 2, 4, 5-trichlorophenol degradation using a novel TiO2-coated biofilm carrier: Roles of adsorption, photocatalysis, and biodegradation[J]. Environmental Science & Technology, 2011, 45(19): 8359-8367.
|
[9] |
ZHOU D, XU Z, DONG S, et al. Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types: Visible light vs UV light[J]. Environmental Science & Technology, 2015, 49(13): 7776-7783.
|
[10] |
DING Y, JIANG W, LIANG B, et al. UV photolysis as an efficient pretreatment method for antibiotics decomposition and their antibacterial activity elimination[J]. Journal of Hazardous Materials, 2020, 392: 122321. doi: 10.1016/j.jhazmat.2020.122321
|
[11] |
FU S, ZHAO X, ZHOU Z, et al. Effective removal of odor substances using intimately coupled photocatalysis and biodegradation system prepared with the silane coupling agent (SCA)-enhanced TiO2 coating method[J]. Water Research, 2021, 188: 116569. doi: 10.1016/j.watres.2020.116569
|
[12] |
HUANG X, WEI D, YAN L, et al. High-efficient biosorption of dye wastewater onto aerobic granular sludge and photocatalytic regeneration of biosorbent by acid TiO2 hydrosol[J]. Environmental Science and Pollution Research International, 2018, 25(27): 27606-27613. doi: 10.1007/s11356-018-2800-x
|
[13] |
BOPARAI H K, JOSEPH M, O'CARROLL D M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles[J]. Journal of Hazardous Materials, 2011, 186(1): 458-465. doi: 10.1016/j.jhazmat.2010.11.029
|
[14] |
APHA. Standard methods for the examination of water and wastewater, 21st ed[J]. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA, 2005.
|
[15] |
MILFERSTEDT K, KUO-DAHAB W C, BUTLER C S, et al. The importance of filamentous cyanobacteria in the development of oxygenic photogranules[J]. Scientific Reports, 2017, 7(1): 17944. doi: 10.1038/s41598-017-16614-9
|
[16] |
LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41(5): 1022-1030. doi: 10.1016/j.watres.2006.06.037
|
[17] |
LOWRY O, ROSEBROUGH N, FARR A L, et al. Protein measurement with the folin phenol reagent[J]. Journal of Biological Chemistry, 1951, 193(1): 265-275. doi: 10.1016/S0021-9258(19)52451-6
|
[18] |
ZHU Y, ZHANG Y, REN H Q, et al. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor[J]. Bioresource Technology, 2015, 180: 345-351. doi: 10.1016/j.biortech.2015.01.006
|
[19] |
JING H, MEZGEBE B, ALY HASSAN A, et al. Experimental and modeling studies of sorption of ceria nanoparticle on microbial biofilms[J]. Bioresource Technology, 2014, 161: 109-117. doi: 10.1016/j.biortech.2014.03.015
|
[20] |
GU L, LI Q, QUAN X, et al. Comparison of nanosilver removal by flocculent and granular sludge and short- and long-term inhibition impacts[J]. Water Research, 2014, 58: 62-70. doi: 10.1016/j.watres.2014.03.028
|
[21] |
LIU R T, WANG X H, ZHANG Y, et al. Optimization of operation conditions for the mitigation of nitrous oxide (N2O) emissions from aerobic nitrifying granular sludge system[J]. Environmental Science and Pollution Research International, 2016, 23(10): 9518-9528. doi: 10.1007/s11356-016-6178-3
|
[22] |
ZHENG X Y, LU D, CHEN W, et al. Response of aerobic granular sludge to the long-term presence of CuO NPs in A/O/A SBRs: nitrogen and phosphorus removal, enzymatic activity, and the microbial community[J]. Environmental Science & Technology, 2017, 51(18): 10503-10510.
|
[23] |
WANG X, SHEN J, KANG J, et al. Mechanism of oxytetracycline removal by aerobic granular sludge in SBR[J]. Water Research, 2019, 161: 308-318. doi: 10.1016/j.watres.2019.06.014
|
[24] |
KANG A J, BROWN A K, WONG C S, et al. Variation in bacterial community structure of aerobic granular and suspended activated sludge in the presence of the antibiotic sulfamethoxazole[J]. Bioresource Technology, 2018, 261: 322-328. doi: 10.1016/j.biortech.2018.04.054
|
[25] |
FAGHIHZADEH F, ANAYA N M, HADJERES H, et al. Pulse UV light effect on microbial biomolecules and organic pollutants degradation in aqueous solutions[J]. Chemosphere, 2019, 216: 677-683. doi: 10.1016/j.chemosphere.2018.10.176
|
[26] |
TRAN N H, URASE T, NGO H H, et al. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants[J]. Bioresource Technology, 2013, 146: 721-731. doi: 10.1016/j.biortech.2013.07.083
|
[27] |
WANG L, YOU L, ZHANG J, et al. Biodegradation of sulfadiazine in microbial fuel cells: Reaction mechanism, biotoxicity removal and the correlation with reactor microbes[J]. Journal of Hazardous Materials, 2018, 360: 402-411. doi: 10.1016/j.jhazmat.2018.08.021
|
[28] |
YANG J F, HE M, WU T F, et al. Sulfadiazine oxidation by permanganate: Kinetics, mechanistic investigation and toxicity evaluation[J]. Chemical Engineering Journal, 2018, 349: 56-65. doi: 10.1016/j.cej.2018.05.018
|