[1] DUKE S O, POWLES S B. Glyphosate: A once-in-a-century herbicide[J]. Pest Management Science, 2008, 64: 319 − 325. doi: 10.1002/ps.1518
[2] QUINN J P, PEDEN J M M, DICK R E. Glyphosate tolerance and utilization by the microflora of soils treated with the herbicide[J]. Applied Microbiology and Biotechnology, 1988, 29: 511 − 516. doi: 10.1007/BF00269078
[3] BENBROOK CM. Trends in glyphosate herbicide use in the United States and globally[J]. Environmental Sciences Europe, 2016, 28: 3 − 14. doi: 10.1186/s12302-016-0070-0
[4] PRADO J R, SEGERS G, VOELKER T, et al. Genetically engineered crops: from idea to product[J]. Annual Review of Plant Biology, 2014, 65: 769 − 790. doi: 10.1146/annurev-arplant-050213-040039
[5] MYERS J P, ANTONIOU M N, BLUMBERG B, et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement[J]. Environmental Health, 2016, 15: 1 − 13. doi: 10.1186/s12940-015-0085-9
[6] HANKE I, WITTMER I, BISCHOFBERGER S, et al. Relevance of urban glyphosate use for surface water quality[J]. Chemosphere, 2010, 81: 422 − 429. doi: 10.1016/j.chemosphere.2010.06.067
[7] PESCE S, BATISSON I, BARDOT C, et al. Response of spring and summer riverine microbial communities following glyphosate exposure. Ecotoxicol[J]. Ecotoxicology and Environmental Safety, 2009, 72: 1905 − 1912. doi: 10.1016/j.ecoenv.2009.07.004
[8] WONG P K. Effect of 2, 4-D, glyphosate and paraquat on growth, photosynthesis and cholorophyll-a synthesis of Scenedesmus quadricauda Berb 614[J]. Chemosphere, 2000, 41: 177 − 182. doi: 10.1016/S0045-6535(99)00408-7
[9] ERMIS U B, DEMIR N. Toxicity of glyphosate and ethoxysulfuron to the green microalgae (Scenedesmus obliquus)[J]. Asian Journal of Chemistry, 2009, 21: 2163 − 2169.
[10] PIZARRO H, Vera MS, VINOCUR A, et al. Glyphosate input modifies microbial community structure in clear and turbid freshwater systems[J]. Environmental Science and Pollution Research, 2016, 23: 5143 − 5153. doi: 10.1007/s11356-015-5748-0
[11] BARBOZA L G A, GIMENEZ B C G. Microplastics in the marine environment: Current trends and future perspectives[J]. Marine Pollution Bulletin, 2015, 97: 5 − 12. doi: 10.1016/j.marpolbul.2015.06.008
[12] HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al. Microplastics in the marine environment: a review of the methods used for identification and quantification[J]. Environmental Science and Technology, 2012, 46: 3060. doi: 10.1021/es2031505
[13] MURPHY F, EWINS C, CARBONNIER F, et al. Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment[J]. Environmental Science and Technology, 2016, 50: 5800 − 5808. doi: 10.1021/acs.est.5b05416
[14] ZHAO S, ZHU L, WANG T, et al. Suspended microplastics in the surface water of the yangtze estuary system, China: First observations on occurrence, distribution[J]. Marine Pollution Bulletin, 2014, 86: 562 − 568. doi: 10.1016/j.marpolbul.2014.06.032
[15] BARNES D K A, WALTERS A, GONÇALVES L. Macroplastics at sea around Antarctica[J]. Marine Environmental Research, 2010, 70: 250 − 252. doi: 10.1016/j.marenvres.2010.05.006
[16] ROCHMAN C M, MARK ANTHONY B, HALPERN B S, et al. Classify plastic waste as hazardous[J]. Nature, 2013, 494: 169 − 171. doi: 10.1038/494169a
[17] VELZEBOER I, KWADIJK C J, KOELMANS A A. Strong sorption of pcbs to nanoplastics, microplastics, carbon nanotubes, and fullerenes[J]. Environmental Science and Technology, 2014, 48: 4869 − 4876. doi: 10.1021/es405721v
[18] TORRE C D, BERGAMI E, SALVATI A, et al. Accumulation and Embryotoxicity of Polystyrene Nanoparticles at Early Stage of Development of Sea Urchin Embryos Paracentrotus lividus[J]. Environmental Science and Technology, 2014, 48: 12302 − 12311. doi: 10.1021/es502569w
[19] MA YN, HUANG AN, CAO SQ, et al. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water[J]. Environmental Pollution, 2016, 219: 166 − 173. doi: 10.1016/j.envpol.2016.10.061
[20] HILT S, GROSS E M J B, ECOLOGY A. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes?[J]. Basic and Applied ecology, 2008, 9: 422 − 432. doi: 10.1016/j.baae.2007.04.003
[21] KONG Y, XU X Y, ZHU L, et al. Control of the harmful alga Microcystis aeruginosa and absorption of nitrogen and phosphorus by Candida utilis[J]. Applied Biochemistry and Biotechnology, 2013, 169: 88 − 99. doi: 10.1007/s12010-012-9946-7
[22] 钱海丰, 陈思, 金瑜剑. 藻类在除草剂生物毒性安全评估中的应用[J]. 浙江工业大学学报, 2017, 45: 32 − 36. doi: 10.3969/j.issn.1006-4303.2017.01.007
[23] 王立新, 吴国荣, 王建安, 等. 黑藻(Hydrilla verticillata)对铜绿微囊藻 (Microcystis aeruginosa) 抑制作用[J]. 湖泊科学, 2004(4): 337 − 342. doi: 10.3321/j.issn:1003-5427.2004.04.008
[24] FENG L J, LI J W, XU E G, et al. Short-term exposure to positively charged polystyrene nanoparticles causes oxidative stress and membrane destruction in cyanobacteria[J]. Environmental Science: Nano, 2019, 6: 3072 − 3079. doi: 10.1039/C9EN00807A
[25] FENG LJ, SUN XD, ZHU FP, et al. Nanoplastics promote microcystin synthesis and release from cyanobacterial Microcystis aeruginosa[J]. Environmental Science and Technology, 2020, 54: 3386 − 3394. doi: 10.1021/acs.est.9b06085
[26] QIAN H, PAN X, CHEN J, et al. Analyses of gene expression and physiological changes in Microcystis aeruginosa reveal the phytotoxicities of three environmental pollutants[J]. Ecotoxicology, 2012, 21: 847 − 859. doi: 10.1007/s10646-011-0845-4
[27] BURCHARDT A D, CARVALHO R N, ANGELICA V, et al. Effects of Silver Nanoparticles in Diatom Thalassiosira pseudonana and Cyanobacterium Synechococcus sp.[J]. Environmental Science and Technology, 2012, 46: 11336 − 11344. doi: 10.1021/es300989e
[28] 张超. 丹参抑制铜绿微囊藻活性成分及机理研究[D]. 杨陵: 西北农林科技大学, 2014.
[29] SHAO J, WU Z, YU G, et al. Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806 (Cyanobacteria): From views of gene expression and antioxidant system[J]. Chemosphere, 2009, 75: 924 − 928. doi: 10.1016/j.chemosphere.2009.01.021
[30] 陈诗. 低浓度阿莫西林对铜绿微囊藻污染的调控效应与机制[D]. 济南: 山东大学, 2017.
[31] BURATTI F M, MANGANELLI M, VICHI S, et al. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation[J]. Archives of Toxicology, 2017, 91: 1049 − 1130. doi: 10.1007/s00204-016-1913-6
[32] BHATTACHARYA P, LIN S, TURNER J P, et al. Physical Adsorption of Charged Plastic Nanoparticles Affects Algal Photosynthesis[J]. The Journal of Physical Chemistry C, 2010, 114: 16556 − 16561. doi: 10.1021/jp1054759
[33] 陈建中. 温度、pH和氮、磷含量对铜绿微囊生长的影响[J]. 海洋与湖沼, 2010, 41: 714 − 718. doi: 10.11693/hyhz201005008008
[34] 吴晓霞, 吴进才, 金银根, 等. 除草剂对水生植物的生理生态效应[J]. 生态学, 2004(24): 2037 − 2042.
[35] BESSELING E, WANG B, LURLING M, et al. Nanoplastic affects growth of S. obliquus and reproduction of D. magna[J]. Environmental Science and Technology, 2014, 48: 12336 − 12343. doi: 10.1021/es503001d
[36] WANG F, BEXIGA M G, ANGUISSOLA S, et al. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles[J]. Nanoscale, 2013, 5: 10868 − 10876. doi: 10.1039/c3nr03249c
[37] DELLA TORRE C, BERGAMI E, SALVATI, et al. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus[J]. Environmental Science and Technology, 2014, 48: 12302 − 12311.