[1] |
EISLER R, WIEMEYER S N. Cyanide hazards to plants and animals from gold mining and related water issues[J]. Reviews of Environmental Contamination and Toxicology, 2004, 183: 21-54.
|
[2] |
DASH R R, GAUR A, BALOMAJUMDER C. Cyanide in industrial wastewaters and its removal: A review on biotreatment[J]. Journal of Hazardous Materials, 2009, 163(1): 1-11. doi: 10.1016/j.jhazmat.2008.06.051
|
[3] |
游丽燕, 胡承志, 刘会娟, 等. 富含活性氯与Al13水处理药剂对铜氰络合物去除效能[J]. 环境工程学报, 2014, 8(4): 1391-1396.
|
[4] |
ZHENG Y, LI Z, WANG X, et al. The treatment of cyanide from gold mine effluent by a novel five-compartment electrodialysis[J]. Electrochimica Acta, 2015, 169: 150-158. doi: 10.1016/j.electacta.2015.04.015
|
[5] |
刘会芳, 乔建刚, 田世超, 等. 石墨烯修饰的二氧化钛纳米管电极光电催化去除铜氰络合物研究[J]. 环境科学学报, 2016, 36(6): 2027-2032.
|
[6] |
施永生, 朱友利, 龙滔, 等. 生物法处理含氰废水的研究进展[J]. 给水排水, 2011, 47(S1): 278-282.
|
[7] |
GUROL M D, BREMEN W M. Kinetics and mechanism of ozonation of free cyanide species in water[J]. Environmental Science & Technology, 1985, 19(9): 804-809.
|
[8] |
TERAMOTO M, SUGIMOTO Y, FUKUI Y, et al. Overall rate of ozone oxidation of cyanide in bubble column[J]. Journal of Chemical Engineering of Japan, 2006, 14(2): 111-115.
|
[9] |
SZPYRKOWICZ L, ZILIO-GRANDI F, KAUL S N, et al. Electrochemical treatment of copper cyanide wastewaters using stainless steel electrodes[J]. Water Science and Technology, 1998, 38(6): 261-268. doi: 10.2166/wst.1998.0260
|
[10] |
WANG L H, XU H D, JIANG N, et al. Trace cupric species triggered decomposition of peroxymonosulfate and degradation of organic pollutants: Cu(III) being the primary and selective intermediate oxidant[J]. Environmental Science & Technology, 2020, 54(7): 4686-4694.
|
[11] |
CAI T, BU L, WU Y, et al. Accelerated degradation of bisphenol a induced by the interaction of EGCG and Cu(II) in Cu(II)/EGCG/peroxymonosulfate process[J]. Chemical Engineering Journal, 2020, 395(9): 125-134.
|
[12] |
YUEPING B, WEN-DA O, TEIK-THYE L, et al. Elucidation of stoichiometric efficiency, radical generation and transformation pathway during catalytic oxidation of sulfamethoxazole via peroxymonosulfate activation[J]. Water Research, 2019, 151: 64-74. doi: 10.1016/j.watres.2018.12.007
|
[13] |
胡长诚. 过氧化氢在环境保护方面的应用[J]. 无机盐工业, 2005, 37(4): 50-52. doi: 10.3969/j.issn.1006-4990.2005.04.019
|
[14] |
姜力强, 郑精武, 刘昊, 等. 电解法处理含氰含铜废水工艺研究[J]. 水处理技术, 2004, 30(3): 153-156. doi: 10.3969/j.issn.1000-3770.2004.03.009
|
[15] |
李亚峰, 顾涛. 金矿含氰废水处理技术[J]. 当代化工, 2003, 32(1): 1-4. doi: 10.3969/j.issn.1671-0460.2003.01.001
|
[16] |
周珉, 黄仕源, 瞿贤. 过氧化氢催化氧化法处理高浓度含氰废水研究[J]. 工业用水与废水, 2013, 44(5): 31-34. doi: 10.3969/j.issn.1009-2455.2013.05.009
|
[17] |
SARLA M, PANDIT M, TYAGI D K, et al. Oxidation of cyanide in aqueous solution by chemical and photochemical process[J]. Journal of Hazardous Materials, 2004, 116(1/2): 49-56.
|
[18] |
万甜, 闫幸幸, 任杰辉, 等. Fe(Ⅱ)活化过硫酸盐改善污泥脱水性能[J]. 环境工程学报, 2020, 14(1): 194-201.
|
[19] |
刘桂芳, 孙亚全, 陆洪宇, 等. 活化过硫酸盐技术的研究进展[J]. 工业水处理, 2012, 32(12): 6-10. doi: 10.3969/j.issn.1005-829X.2012.12.002
|
[20] |
唐海, 沙俊鹏, 欧阳龙, 等. Fe(Ⅱ)活化过硫酸盐氧化破解剩余污泥[J]. 化工学报, 2015, 66(2): 785-792. doi: 10.11949/j.issn.0438-1157.20141072
|
[21] |
WANG Y, TIAN S, CAO D, et al. Enhancement of electrochemical oxidation of ${\rm{Cu}}\left( {{\rm{CN}}} \right)_3^{2 - }$ by the peroxydisulfate oxidation[J]. Separation and Purification Technology, 2017, 188: 119-125. doi: 10.1016/j.seppur.2017.07.006
|
[22] |
唐琪, 王玉如, 郭菁豪, 等. CuO活化过硫酸盐对孔雀石绿的降解[J]. 环境工程学报, 2017, 11(4): 108-114.
|
[23] |
王云飞, 李一兵, 王彦斌, 等. 过硫酸钾氧化去除 ${\rm{Cu(CN)}}_3^{2 - } $中的氰污染物[J]. 环境科学, 2017, 38(3): 219-224.
|