[1] ZHAO Z, WANG S, JIA Y. Effect of sulfide on As(Ⅲ) and As(V) sequestration by ferrihydrite [J]. Chemosphere, 2017, 185: 321-328. doi: 10.1016/j.chemosphere.2017.06.134
[2] 韩双宝, 张福存, 张徽, 等. 中国北方高砷地下水分布特征及成因分析 [J]. 中国地质, 2010, 37(3): 748-751. HAN S B, ZHANG F C, ZHANG H, et al. An analysis of the distribution and formation of high arsenic groundwater in northern China [J]. Geology in China, 2010, 37(3): 748-751(in Chinese).
[3] 郑天亮, 邓娅敏, 鲁宗杰, 等. 江汉平原浅层含砷地下水稀土元素特征及其指示意义 [J]. 地球科学, 2017, 42(5): 694-703. ZHENG T L, DENG Y M, LU Z J, et al. Geochemistry and implications of rare earth elements in arsenic-affected shallow aquifer from Jianghan Plain, Central China [J]. Earth Science, 2017, 42(5): 694-703(in Chinese).
[4] 张丽萍, 谢先军, 李俊霞, 等. 大同盆地富砷地下水的水化学与地球化学研究 [J]. 生态毒理学报, 2013, 8(2): 215-221. doi: 10.7524/AJE.1673-5897.20121223002 ZHANG L P, XIE X J, LI J X, et al. Hydrochemical and geochemical investigations on high arsenic groundwater from Datong Basin, Northern China [J]. Asian Journal of Ecotoxicology, 2013, 8(2): 215-221(in Chinese). doi: 10.7524/AJE.1673-5897.20121223002
[5] 邓安琪, 董兆敏, 高群, 等. 中国地下水砷健康风险评价 [J]. 中国环境科学, 2017, 37(9): 3556-3565. doi: 10.3969/j.issn.1000-6923.2017.09.044 DENG A Q, DONG Z M, GAO Q, et al. Health risk assessment of arsenic in groundwater across China [J]. China Environment Science, 2017, 37(9): 3556-3565(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.09.044
[6] SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters [J]. Applied Geochemistry, 2002, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5
[7] 王焰新, 郭华明, 阎世龙, 等. 浅层孔隙地下水系统环境演化及污染敏感性研究-以山西大同盆地为例[M]. 北京: 科学出版社, 2004: 53-80. WANG Y X, GUO H M, YAN S L, et al. Geochemical evolution of shallow groundwater systems and their vulnerability to contamants: A case study at Datong Basin[M]. Beijing: Science Press, 2004: 53-80 (in Chinese).
[8] MUKHERJEE A, FRYAR A E, THOMAS W A. Geologic, geomorphic and hydrologic framework and evolution of the Bengal Basin, India and Bangladesh [J]. Journal of Asian Earth Sciences, 2009, 34(3): 227-244. doi: 10.1016/j.jseaes.2008.05.011
[9] 高存荣, 刘文波, 冯翠娥, 等. 干旱、半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例 [J]. 地学前缘, 2014, 21(4): 13-27. GAO C R, LIU W B, FENG C E, et al. Research on the formation mechanism of high arsenic groundwater in arid and semi-arid regions: A case study of Hetao plain in inner Mongolia, China [J]. Earth Science Frontiers, 2014, 21(4): 13-27(in Chinese).
[10] ZHANG Z H, XIAO C L, ADEYEYE O, et al. Source and mobilization mechanism of iron, manganese and arsenic in groundwater of Shuangliao City, Northeast China [J]. Water, 2020, 12(2): 534. doi: 10.3390/w12020534
[11] 余倩, 张宇, 邬建勋, 等. 江汉平原沉积物中磷酸盐与砷的竞争吸附机制 [J]. 中南民族大学学报(自然科学版), 2020, 39(4): 337-342. YU Q, ZHANG Y, WU J X, et al. Competitive adsorption mechanism of phosphate and arsenic in sediments from Jianghan Plain [J]. Journal of South-Central University for Nationalities(Natural Science Edition), 2020, 39(4): 337-342(in Chinese).
[12] 郭华明, 郭琦, 贾永锋, 等. 中国不同区域高砷地下水化学特征及形成过程 [J]. 地球科学与环境学报, 2013, 35(3): 85-92. GUO H M, GUO Q, JIA Y F, et al. Chemical characteristics and geochemical processes of high arsenic groundwater indifferent regions of China [J]. Journal of Earth Sciences and Environment, 2013, 35(3): 85-92(in Chinese).
[13] 王连方, 郑宝山, 王生玲, 等. 新疆水砷及其对开发建设的影响 [J]. 地方病通报, 2002, 17(1): 21-24. doi: 10.3969/j.issn.1000-3711.2002.01.007 WANG L F, ZHENG B S, WANG S L, et al. Water arsenic and its influence on the development of Xinjiang [J]. Endemic Disease Bulletin, 2002, 17(1): 21-24(in Chinese). doi: 10.3969/j.issn.1000-3711.2002.01.007
[14] 罗艳丽, 李晶, 蒋平安, 等. 新疆奎屯原生高砷地下水的分布、类型及成因分析 [J]. 环境科学学报, 2017, 37(8): 2898-2903. LUO Y L, LI J, JIANG P A, et al. Distribution, classification and cause analysis of geogenic high-arsenic groundwater in Kuitun, Xinjiang [J]. Acta Scientiae Circumstantiae, 2017, 37(8): 2898-2903(in Chinese).
[15] 孙丹阳, 朱东波. 中国西北地区高砷地下水赋存环境对比及其成因分析 [J]. 资源环境与工程, 2019, 33(3): 387-390. SUN D Y, ZHU D B. Environment contrast and Genesis analysis of high arsenic groundwater in Northwestern China [J]. Resources Environment & Engineering, 2019, 33(3): 387-390(in Chinese).
[16] 吕晓立, 刘景涛, 朱亮, 等. 甘肃省榆中盆地地下水化学演化特征及控制因素 [J]. 干旱区资源与环境, 2020, 34(2): 195-201. LV X L, LIU J T, ZHU L, et al. Characteristics and controlling factors of chemical evolution of groundwater in Yuzhong basin [J]. Journal of Arid Land Resources and Environment, 2020, 34(2): 195-201(in Chinese).
[17] 罗艳丽, 李晶, 蒋平安, 等. 新疆高砷地区地下水水化学特征及其成因分析 [J]. 干旱区资源与环境, 2017, 31(8): 116-121. LUO Y L, LI J, JIANG P A, et al. Hydro-chemical characteristics and the formations for groundwater in Kuitun, Xinjiang [J]. Journal of Arid Land Resources and Environment, 2017, 31(8): 116-121(in Chinese).
[18] LI M Q, LIANG X J, XIAO C L, et al. Hydrochemical evolution of groundwater in a typical semi-arid groundwater storage basin using a zoning model [J]. Water, 2019, 11(7): 1334. doi: 10.3390/w11071334
[19] 李勇, 高旭波, 张鑫, 等. 运城盆地高砷区地下水-沉积物中砷的地球化学特征研究 [J]. 安全与环境工程, 2017, 24(5): 68-74. LI Y, GAO X B, ZHANG X, et al. Geochemistry of arsenic in sediments groundwater in areas with arsenic polluted groundwater in Yuncheng Basin [J]. Safety and Environmental Engineering, 2017, 24(5): 68-74(in Chinese).
[20] 袁翰卿, 李巧, 陶洪飞, 等. 新疆奎屯河流域地下水砷富集因素 [J]. 环境化学, 2020, 39(2): 524-530. doi: 10.7524/j.issn.0254-6108.2019051403 YUAN H Q, LI Q, TAO H F, et al. Groundwater arsenic enrichment factors of Kuitun river basin, Xinjiang [J]. Environmental Chemistry, 2020, 39(2): 524-530(in Chinese). doi: 10.7524/j.issn.0254-6108.2019051403
[21] GUO H M, LIU C, LU H, et al. Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao Basin, Inner Mongolia, China: An iron isotope approach [J]. Geochimica et Cosmochimica Acta, 2013, 112: 130-145. doi: 10.1016/j.gca.2013.02.031
[22] 段艳华, 甘义群, 郭欣欣, 等. 江汉平原高砷地下水监测场水化学特征及砷富集影响因素分析 [J]. 地质科技情报, 2014, 33(2): 141-146. DUAN Y H, GAN Y Q, GUO X X, et al. Hydrogeochemistry and arsenic contamination of groundwater in the monitoring field, Jianghan Plain [J]. Geological Science and Technology Information, 2014, 33(2): 141-146(in Chinese).
[23] 张昌延, 何江涛, 张小文, 等. 珠江三角洲高砷地下水赋存环境特征及成因分析 [J]. 环境科学, 2018, 39(8): 3632-3637. ZHANG C Y, HE J T, ZHANG X W, et al. Geochemical characteristics and genesis analyses of high-arsenic groundwater in the Pearl River Delta [J]. Environmental Science, 2018, 39(8): 3632-3637(in Chinese).
[24] 李巧, 周金龙, 曾妍妍. 奎屯河及玛纳斯河流域平原区地下水中氮素对砷迁移富集的影响 [J]. 环境化学, 2017, 36(10): 2227-2234. doi: 10.7524/j.issn.0254-6108.2017021307 LI Q, ZHOU J L, ZENG Y Y. Effects of nitrogens on the migration and enrichment of arsenic in the groundwater in the plain area of Kuitun River and Manas River basin [J]. Environmental Chemistry, 2017, 36(10): 2227-2234(in Chinese). doi: 10.7524/j.issn.0254-6108.2017021307
[25] 张丽萍, 谢先军, 李俊霞, 等. 大同盆地地下水中砷的形态、分布及其富集过程研究 [J]. 地质科技情报, 2014, 33(1): 179-182. ZHANG L P, XIE X J, LI J X, et al. Spatial variation, speciation and enrichment of arsenic in groundwater from the Datong basin, Northern China [J]. Geological Science and Technology Information, 2014, 33(1): 179-182(in Chinese).
[26] 袁雪花, 苏玉红. 奎屯高砷地下水灌溉区居民头发和指甲中砷含量研究 [J]. 安全与环境学报, 2017, 17(4): 1519-1523. YUAN X H, SU Y H. On the arsenic content rate in the hair and nail of the residents due to the high arsenic groundwater pollution in Kuitun irrigated area, Xinjiang [J]. Journal of Safety and Environment, 2017, 17(4): 1519-1523(in Chinese).
[27] 邬建勋, 余倩, 蒋庆肯, 等. 江汉平原高砷地下水与含水层沉积物的地球化学特征 [J]. 地质科技情报, 2019, 38(1): 251-257. WU J X, YU Q, JIANG Q K, et al. Geochemical characteristics of groundwater and aquifer sediments in high arsenic groundwater in Jianghan Plain [J]. Geological Science and Technology Information, 2019, 38(1): 251-257(in Chinese).
[28] GUO H M, ZHANG D, WEN D G, et al. Arsenic mobilization in aquifers of the Southwest Songnen basin, P. R. China: Evidences from chemical and isotopic characteristics [J]. Science of the Total Environment, 2014, 490: 590-602. doi: 10.1016/j.scitotenv.2014.05.050
[29] 郭华明, 倪萍, 贾永锋, 等. 原生高砷地下水的类型、化学特征及成因 [J]. 地学前缘, 2014, 21(4): 1-12. GUO H M, NI P, JIA Y F, et al. Types, chemical characteristics and genesis of geogenic high-arsenic groundwater in the world [J]. Earth Science Frontiers, 2014, 21(4): 1-12(in Chinese).
[30] 余倩, 谢先军, 马瑞, 等. 地下水系统中砷迁移富集过程的水文地球化学模拟 [J]. 地质科技情报, 2013, 32(6): 116-122. YU Q, XIE X J, MA R, et al. Hydrogeochemical modeling of arsenic transport and enrichment in groundwater [J]. Geological Science and Technology Information, 2013, 32(6): 116-122(in Chinese).