[1] |
CONNAN R, DABERT P, MOYA-ESPINOSA M, et al. Coupling of partial nitritation and anammox in two- and one-stage systems: Process operation, N2O emission and microbial community[J]. Journal of Cleaner Production, 2018, 203: 559-573.
|
[2] |
LI X, ZHANG J, ZHANG X, et al. Start-up and nitrogen removal performance of CANON and SNAD processes in a pilot-scale oxidation ditch reactor[J]. Process Biochemistry, 2019, 84: 134-142. doi: 10.1016/j.procbio.2019.06.010
|
[3] |
ZUO L, YAO H, LI H, et al. Modeling of completely autotrophic nitrogen removal process with salt and glycine betaine addition[J]. Chemosphere, 2021, 264(2): 128474.
|
[4] |
HE S, ZHANG Y, NIU Q, et al. Operation stability and recovery performance in an Anammox EGSB reactor after pH shock[J]. Ecological Engineering, 2016, 90: 50-56. doi: 10.1016/j.ecoleng.2016.01.084
|
[5] |
SLIEKERS A, THIRD K, ABMA W, et al. CANON and Anammox in a gas-lift reactor[J]. FEMS Microbiology Letters, 2003, 218(2): 339-344.
|
[6] |
YUE X, YU G, LIU Z, et al. Fast start-up of the CANON process with a SABF and the effects of pH and temperature on nitrogen removal and microbial activity[J]. Bioresource Technology, 2018, 254: 157-165.
|
[7] |
PARK H, ROSENTHAL A, JEZEK R, et al. Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation (anammox) bioreactor communities[J]. Water Research, 2010, 44(17): 5005-5013. doi: 10.1016/j.watres.2010.07.022
|
[8] |
刘竹寒, 岳秀, 于广平, 等. 单级全程自养脱氮工艺研究进展[J]. 水处理技术, 2017, 43(2): 8-13.
|
[9] |
李祥, 黄勇, 袁怡, 等. 不同泥源对厌氧氨氧化反应器启动的影响[J]. 环境工程学报, 2012, 6(7): 2143-2148.
|
[10] |
FENG X, WANG X, WANG R, et al. Zeolite biofilm aeration filter plays a pre-nitritation role in the autotrophic nitrogen removal from iron oxide red wastewater[J]. Journal of Chemical Technology and Biotechnology, 2020, 95(12): 3261-3269. doi: 10.1002/jctb.6505
|
[11] |
FANG F, LI K, GUO J, et al. New insights into nitrous oxide emissions in a single-stage CANON process coupled with denitrification: thermodynamics and nitrogen transformation[J]. Water Science and Technology, 2020, 82(1): 157-169.
|
[12] |
RUIZ G, JEISON D, RUBILAR O, et al. Nitrification-denitrification via nitrite accumulation for nitrogen removal from wastewaters[J]. Bioresource Technology, 2006, 97(2): 330-335. doi: 10.1016/j.biortech.2005.02.018
|
[13] |
XIAO P, AI S, ZHOU J, et al. N2O profiles in the enhanced CANON process via long-term N2H4 addition: Minimized N2O production and the influence of exogenous N2H4 on N2O sources[J]. Environmental Science and Pollution Research, 2020, 27(30): 37188-37198.
|
[14] |
LI G, CARVAJAL-ARROYO J, SIERRA-ALVAREZ R, et al. Mechanisms and control of $ {\rm{N}}{{\rm{O}}^ -_2} $ inhibition of anaerobic ammonium oxidation (anammox)[J]. Water Environment Research, 2017, 89(4): 330-336.
|
[15] |
YANG R, MAO W, WANG X, et al. Response and adaptation of microbial community in a CANON reactor exposed to an extreme alkaline shock[J]. Archaea-An International Microbiological Journal, 2020, 2020: 8888615.
|
[16] |
HE S, NIU Q, MA H, et al. The treatment performance and the bacteria preservation of anammox: A review[J]. Water, Air and Soil Pollution, 2015, 226(5): 163.
|
[17] |
LI S, CHEN Y, LI C, et al. Influence of free ammonia on completely autotrophic nitrogen removal over nitrite (CANON) process[J]. Applied Biochemistry and Biotechnology, 2012, 167(4): 694-704.
|
[18] |
VADIVELU V, YUAN Z, FUX C, et al. The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched Nitrobacter culture[J]. Environmental Science & Technology, 2006, 40(14): 4442-4448.
|
[19] |
PUYOL D, CARVAJAL-ARROYO J, SIERRA-ALVAREZ R, et al. Nitrite (not free nitrous acid) is the main inhibitor of the anammox process at common pH conditions[J]. Biotechnology Letters, 2014, 36(3): 547-551.
|
[20] |
ZHANG Y, HE S, NIU Q, et al. Characterization of three types of inhibition and their recovery processes in an anammox UASB reactor[J]. Biochemical Engineering Journal, 2016, 109: 212-221.
|
[21] |
WAKI M, TOKUTOMI T, YOKOYAMA H, et al. Nitrogen removal from animal waste treatment water by anammox enrichment[J]. Bioresource Technology, 2007, 98(14): 2775-2780.
|
[22] |
YANG R, WANG X, GUO Y, et al. Evaluation of anammox pathway recovery after high COD loading using water quality, molecular biology and isotope labelling analysis[J]. Bioprocess and Biosystem Engineering, 2020, 43(4): 625-636. doi: 10.1007/s00449-019-02260-0
|
[23] |
HENDRICKX T, KAMPMAN C, ZEEMAN G, et al. High specific activity for anammox bacteria enriched from activated sludge at 10 ℃[J]. Bioresource Technology, 2014, 163: 214-221. doi: 10.1016/j.biortech.2014.04.025
|
[24] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[25] |
LIU W, YANG Q, MA B, et al. Rapid achievement of nitritation using aerobic starvation[J]. Environmental Science & Technology, 2017, 51(7): 4001-4008.
|
[26] |
YU R, CHANDRAN K. Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations[J]. BMC Microbiology, 2010, 10(1): 70.
|
[27] |
BRAKER G, FESEFELDT A, WITZEL K. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples[J]. Applied and Environmental Microbiology, 1998, 64(10): 3769-3775.
|
[28] |
GRAVE R, DA SILVEIRA NICOLOSO R, CASSOL P, et al. Determining the effects of tillage and nitrogen sources on soil N2O emission[J]. Soil and Tillage Research, 2018, 175: 1-12.
|
[29] |
WANG Y, MA X, ZHOU S, et al. Expression of the nirS, hzsA, and hdh genes in response to nitrite shock and recovery in Candidatus Kuenenia stuttgartiensis[J]. Environmental Science & Technology, 2016, 50(13): 6940-6947.
|
[30] |
MIAO Y, ZHANG L, LI B, et al. Enhancing ammonium oxidizing bacteria activity was key to single-stage partial nitrification-anammox system treating low-strength sewage under intermittent aeration condition[J]. Bioresource Technology, 2017, 231: 36-44.
|
[31] |
PARK M, PARK H, CHANDRAN K. Molecular and kinetic characterization of planktonic Nitrospira spp. selectively enriched from activated sludge[J]. Environmental Science & Technology, 2017, 51(5): 2720-2728.
|
[32] |
ZHANG Z, CHEN S, WU P, et al. Start-up of the Canon process from activated sludge under salt stress in a sequencing batch biofilm reactor (SBBR)[J]. Bioresource Technology, 2010, 101(16): 6309-6314. doi: 10.1016/j.biortech.2010.03.040
|
[33] |
VDZQUEZ-PADIN J, MOSQUERA-CORRAL A, CAMPOS J, et al. Microbial community distribution and activity dynamics of granular biomass in a CANON reactor[J]. Water Research, 2010, 44(15): 4359-4370.
|
[34] |
YUE X, YU G, LIU Z, et al. Start-up of the completely autotrophic nitrogen removal over nitrite process with a submerged aerated biological filter and the effect of inorganic carbon on nitrogen removal and microbial activity[J]. Bioresource Technology, 2018, 254: 347. doi: 10.1016/j.biortech.2018.01.107
|
[35] |
YUE X, YU G, LU Y, et al. Effect of dissolved oxygen on nitrogen removal and the microbial community of the completely autotrophic nitrogen removal over nitrite process in a submerged aerated biological filter[J]. Bioresource Technology, 2018, 254: 67-74. doi: 10.1016/j.biortech.2018.01.044
|
[36] |
HUYNH T, NGUYEN P, PHAN T, et al. Application of CANON process for nitrogen removal from anaerobically pretreated husbandry wastewater[J]. International Biodeterioration & Biodegradation, 2019, 136: 15-23.
|
[37] |
李亚峰, 秦亚敏, 谢新立, 等. 间歇曝气条件下短程硝化的实现及影响因素研究[J]. 环境工程学报, 2011, 5(7): 1518-1521.
|
[38] |
YONG M, PENG Y, WANG S, et al. Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant[J]. Water Research, 2009, 43(3): 563-572.
|
[39] |
CEMA G, SZATKOWSKA B, PLAZA E, et al. Nitrogen removal rates at a technical-scale pilot plant with the one-stage partial nitritation/Anammox process[J]. Water Science & Technology, 2006, 54(8): 209.
|
[40] |
MAO N, REN H, GENG J, et al. Engineering application of anaerobic ammonium oxidation process in wastewater treatment[J]. World Journal of Microbiology & Biotechnology, 2017, 33(8): 153.
|
[41] |
ZHANG F, PENG Y, WANG S, et al. Efficient step-feed partial nitrification, simultaneous Anammox and denitrification (SPNAD) equipped with real-time control parameters treating raw mature landfill leachate[J]. Journal of Hazardous Materials, 2019, 364: 163-172. doi: 10.1016/j.jhazmat.2018.09.066
|
[42] |
CHU Z, WANG K, LI X, et al. Microbial characterization of aggregates within a one-stage nitritation-anammox system using high-throughput amplicon sequencing[J]. Chemical Engineering Journal, 2015, 262: 41-48.
|
[43] |
KOMPANTSEVA E, KUBLANOV I, PEREVALOVA A, et al. Calorithrix insularis gen. nov., sp. nov., a novel representative of the phylum Calditrichaeota[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5): 1486-1490. doi: 10.1099/ijsem.0.001744
|
[44] |
TIAN S, TIAN Z, YANG H, et al. Detection of viable bacteria during sludge ozonation by the combination of ATP assay with PMA-Miseq sequencing[J]. Water, 2017, 9(3): 166.
|
[45] |
LEAL C, PEREIRA A, NUNES F, et al. Anammox for nitrogen removal from anaerobically pre-treated municipal wastewater: Effect of COD/N ratios on process performance and bacterial community structure[J]. Bioresource Technology, 2016, 211: 257-266. doi: 10.1016/j.biortech.2016.03.107
|
[46] |
KONG Q, HE X, FENG Y, et al. Pollutant removal and microorganism evolution of activated sludge under ofloxacin selection pressure[J]. Bioresource Technology, 2017, 241: 849-856. doi: 10.1016/j.biortech.2017.06.019
|
[47] |
WANG Y, CHEN J, ZHOU S, et al. 16S rRNA gene high-throughput sequencing reveals shift in nitrogen conversion related microorganisms in a CANON system in response to salt stress[J]. Chemical Engineering Journal, 2017, 317: 512-521. doi: 10.1016/j.cej.2017.02.096
|
[48] |
CONNAN R, DABERT P, KHALIL H, et al. Batch enrichment of anammox bacteria and study of the underlying microbial community dynamics[J]. Chemical Engineering Journal, 2016, 297: 217-228. doi: 10.1016/j.cej.2016.03.154
|
[49] |
SHU D, HE Y, YUE H, et al. Metagenomic insights into the effects of volatile fatty acids on microbial community structures and functional genes in organotrophic anammox process[J]. Bioresource Technology, 2015, 196: 621-633. doi: 10.1016/j.biortech.2015.07.107
|
[50] |
SPETH D, GUERRERO-CRUZ S, DUTILH B, et al. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system[J]. Nature Communications, 2016, 7: 11172.
|
[51] |
WANG Z, ZHANG X, HUANG K, et al. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant[J]. PloS One, 2013, 8(10): e76079.
|
[52] |
KINDAICHI T, YURI S, OZAKI N, et al. Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor[J]. Water Science and Technology, 2012, 66(12): 2556-2561. doi: 10.2166/wst.2012.479
|
[53] |
ALAGELY A, KREDIET C, RITCHIE K, et al. Signaling-mediated cross-talk modulates swarming and biofilm formation in a coral pathogen Serratia marcescens[J]. ISME Journal, 2011, 5(10): 1609-1620. doi: 10.1038/ismej.2011.45
|
[54] |
WANG C, LIU S, XU X, et al. Potential coupling effects of ammonia-oxidizing and anaerobic ammonium-oxidizing bacteria on completely autotrophic nitrogen removal over nitrite biofilm formation induced by the second messenger cyclic diguanylate[J]. Applied Microbiology & Biotechnology, 2017, 101(9): 3821-3828.
|
[55] |
CHEN C, SUN F, ZHANG H, et al. Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR)[J]. Bioresource Technology, 2016, 216: 571-578. doi: 10.1016/j.biortech.2016.05.115
|
[56] |
CUI Y, ZHANG H, LU P, et al. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process[J]. Scientific Reports, 2016, 6: 30766. doi: 10.1038/srep30766
|