[1] NGUYEN T T D, NGUYEN T T, BINH Q A, et al. Co-culture of microalgae-activated sludge for wastewater treatment and biomass production: Exploring their role under different inoculation ratios[J]. Bioresource Technology, 2020, 314: 123754. doi: 10.1016/j.biortech.2020.123754
[2] KATAM K, BHATTACHARY A D. Simultaneous treatment of domestic wastewater and bio-lipid synthesis using immobilized and suspended cultures of microalgae and activated sludge[J]. Journal of Industrial and Engineering Chemistry, 2019, 69: 295-303. doi: 10.1016/j.jiec.2018.09.031
[3] LEONG W H, LIM J W, LAM M K, et al. Co-cultivation of activated sludge and microalgae for the simultaneous enhancements of nitrogen-rich wastewater bioremediation and lipid production[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87: 216-224. doi: 10.1016/j.jtice.2018.03.038
[4] ZHU S, QIN L, FENG P, et al. Treatment of low C/N ratio wastewater and biomass production using co-culture of Chlorella vulgaris and activated sludge in a batch photobioreactor[J]. Bioresource Technology, 2019, 274: 313-320. doi: 10.1016/j.biortech.2018.10.034
[5] JI X, JIANG M, ZHANG J, et al. The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater[J]. Bioresource Technology, 2018, 247: 44-50. doi: 10.1016/j.biortech.2017.09.074
[6] HUO S, KONG M, ZHU F, et al. Co-culture of Chlorella and wastewater-born bacteria in vinegar production wastewater: Enhancement of nutrients removal and influence of algal biomass generation[J]. Algal Research, 2020, 45: 101744. doi: 10.1016/j.algal.2019.101744
[7] GUTZEIT G, LORCH D, WEBER A, et al. Bioflocculent algal-bacterial biomass improves low-cost wastewater treatment[J]. Water Science and Technology, 2005, 52: 9-18.
[8] SU Y, MENNERICH A, URBAN B. Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: Influence of algae and sludge inoculation ratios[J]. Bioresource Technology, 2012, 105: 67-73. doi: 10.1016/j.biortech.2011.11.113
[9] MUJTABA G, LEE K. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge[J]. Water Research, 2017, 120: 174-184. doi: 10.1016/j.watres.2017.04.078
[10] 王金霞. 溶藻细菌S7溶藻特性、机理及影响因素的研究[D]. 重庆: 重庆大学, 2012.
[11] 李彦芹, 阚振荣, 穆淑梅, 等. 光合细菌研究进展. 河北大学学报(自然科学版)[J], 2005, 25(5): 554-560.
[12] 张丽, 宋馨宇, 陈磊, 等. 光合微生物混菌体系的应用和研究进展[J]. 生物工程学报, 2020, 36(4): 652-665.
[13] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[14] SERENA P, PAOLA F, FRANCESCO B, et al. How inoculation affects the development and the performances of microalgal-bacterial consortia treating real municipal wastewater[J]. Journal of Environmental Management, 2020, 263: 110427. doi: 10.1016/j.jenvman.2020.110427
[15] GARC A D, POSADA S E, BLANCO S, et al. Evaluation of the dynamics of microalgae population structure and process performance during piggery wastewater treatment in algal-bacterial photobioreactors[J]. Bioresource Technology, 2018, 248: 120-126. doi: 10.1016/j.biortech.2017.06.079
[16] DONNA L S, CLIVE H W, MATTHEW H T, et al. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production[J]. Bioresource Technology, 2015, 184: 222-229. doi: 10.1016/j.biortech.2014.10.074
[17] BARROS A I, GONALVES A L, SIMOES M, et al. Harvesting techniques applied to microalgae: A review[J]. Renewable & Sustainable Energy Reviews, 2015, 41: 1489-1500.
[18] CHEVALIER P, NOÜE J. Efficiency of immobilized hyperconcentrated algae for ammonium and phosphate removal from wastewaters[J]. Biotechnology Letters, 1985, 7(6): 395-400. doi: 10.1007/BF01166210
[19] 胡子全. 好氧聚磷菌的分离、鉴定及其聚磷特性的研究[D]. 合肥: 安徽农业大学, 2008.
[20] SUTHERLAND D L, HOWARD-WILLIAMS C, TURNBULL M H, et al. The effects of CO2 addition along a pH gradient on wastewater microalgal photo-physiology, biomass production and nutrient removal[J]. Water Research, 2015, 70: 9-26. doi: 10.1016/j.watres.2014.10.064
[21] 王新为, 孔庆鑫, 金敏, 等. pH值与曝气对硝化细菌硝化作用的影响[J]. 解放军预防医学杂志, 2003, 21(5): 319-322. doi: 10.3969/j.issn.1001-5248.2003.05.003
[22] RUPERT C, DONNA S, HELENA C. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production[J]. Journal of Applied Phycology, 2012, 24(3): 329-337. doi: 10.1007/s10811-012-9810-8
[23] SUTHERLAND D L, HOWARD-WILLIAMS C, TURNBULL M H, et al. Seasonal variation in light utilization, biomass production and nutrient removal by wastewater microalgae in a full-scale high-rate algal pond[J]. Journal of Apply Phycology, 2013, 26(3): 1317-1329.
[24] 邹万生, 罗玉双, 刘良国, 等. 1株微小杆菌对4种蓝藻的生长影响[J]. 生态与农村环境学报, 2013, 29(5): 612-617. doi: 10.3969/j.issn.1673-4831.2013.05.012
[25] DUCAT D C, AVELAR-RIVAS J A, WAY J C, et al. Rerouting carbon flux to enhance photosynthetic productivity[J]. Applied and Environmental Microbiology, 2012, 78(8): 2660-2668. doi: 10.1128/AEM.07901-11
[26] LI T T, LI C T, BUTLER K, et al. Mimicking lichens: Incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal and lipid production in a stable mutualistic co-culture production platform[J]. Biotechnology for Biofuels, 2017, 10: 55. doi: 10.1186/s13068-017-0736-x
[27] BERNSTEIN H C, MC CLURE R S, THIEL V, et al. Indirect interspecies regulation: transcriptional and physiological responses of a cyanobacterium to heterotrophic partnership[J]. mSystems, 2017, 2(2): e00181-16.
[28] SERGEY A K, GUIFR T, MOREIRA D, et al. Molecular phylogeny of paraphelidium letcheri sp. nov. (Aphelida, Opisthosporidia)[J]. Eukaryotic Microbiology, 2017, 64(5): 573-578. doi: 10.1111/jeu.12389
[29] BOENIGK J. The Choanoflagellates: Evolution, biology and ecology[J]. Marine Biology Research, 2015, 11(10): 1118-1119. doi: 10.1080/17451000.2015.1080846