[1] 梁文俊, 李坚, 李依丽, 等. 挥发性有机物低温等离子体降解的影响参数研究[J]. 环境工程学报, 2009, 6(3): 1079-1083.
[2] KHANCHI A, HEBBERN C A, ZHU J, et al. Exposure to volatile organic compounds and associated health risks in windsor, Canada[J]. Atmospheric Environment, 2015, 120: 152-159. doi: 10.1016/j.atmosenv.2015.08.092
[3] 张玉欣, 安俊琳, 林旭, 等. 南京北郊冬季挥发性有机物来源解析及苯系物健康评估[J]. 环境科学, 2017, 38(1): 1-12.
[4] 徐静颖, 卓建坤, 姚强. 燃煤有机污染物生成排放特性与采样方法研究进展[J]. 化工学报, 2019, 70(8): 2823-2834.
[5] WANG G, CHENG S, WEI W, et al. Characteristics and source apportionment of VOCs in the suburban area of Beijing, China[J]. Atmospheric Pollution Research, 2016, 7(4): 711-724. doi: 10.1016/j.apr.2016.03.006
[6] YIN S, ZHENG J, LU Q, et al. A refined 2010-based VOC emission inventory and its improvement on modeling regional ozone in the Pearl River Delta Region, China[J]. Science of the Total Environment, 2015, 514: 426-438. doi: 10.1016/j.scitotenv.2015.01.088
[7] 梁小明, 孙西勃, 徐建铁, 等. 中国工业源挥发性有机物排放清单[J]. 环境科学, 2020, 41(11): 4767-4775.
[8] 梁小明, 张嘉妮, 陈小方, 等. 我国人为源挥发性有机物反应性排放清单[J]. 环境科学, 2017, 38(3): 845-854.
[9] YAN Y, PENG L, LI R, et al. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: A study in Shuozhou, China[J]. Environmental Pollution, 2017, 223: 295-304. doi: 10.1016/j.envpol.2017.01.026
[10] CHENG J, LIU J, WANG T, et al. Reductions in volatile organic compound emissions from coal-fired power plants by combining air pollution control devices and modified fly ash[J]. Energy & Fuels, 2019, 33(4): 2926-2933.
[11] PUDASAINEE D, KIM J H, LEE S H, et al. Hazardous air pollutants emission from coal and oil-fired power plants[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(2): 299-303. doi: 10.1002/apj.268
[12] KÜÇÜKAÇIL ARTUN G, POLAT N, YAY O D, et al. An integrative approach for determination of air pollution and its health effects in a coal fired power plant area by passive sampling[J]. Atmospheric Environment, 2017, 150: 331-345. doi: 10.1016/j.atmosenv.2016.11.025
[13] 吕太, 贺培叶. 防止中小型锅炉脱硫除尘一体化系统中引风机积灰振动的研究[J]. 环境工程学报, 2016, 10(1): 272-276. doi: 10.12030/j.cjee.20160144
[14] 刘含笑, 陈招妹, 王少权, 等. 燃煤电厂SO3排放特征及其脱除技术[J]. 环境工程学报, 2019, 13(5): 1128-1138. doi: 10.12030/j.cjee.201812137
[15] LIU J, WANG T, CHENG J, et al. Distribution of organic compounds in coal-fired power plant emissions[J]. Energy & Fuels, 2019, 33(6): 5430-5437.
[16] LI Z, CHEN L, LIU S, et al. Characterization of PAHs and PCBs in fly ashes of eighteen coal-fired power plants[J]. Aerosol and Air Quality Research, 2017, 16(12): 3175-3186. doi: 10.4209/aaqr.2016.10.0430
[17] 马宪梅, 黄晓飞. 燃煤电厂超低排放脱硫除尘技术路线探讨[J]. 环境与发展, 2020, 32(9): 73-74.
[18] 崔进, 刘成鑫, 陈姗, 等. 气袋采样/热脱附-气相色谱-质谱法检测儿童地垫中35种挥发性有机物[J]. 分析试验室, 2020, 39(6): 700-705.
[19] 李孜军, 孙瑞雪. 室内空气总挥发性有机物检测的热解吸参数优化[J]. 环境工程学报, 2012, 10(6): 3689-3692.
[20] 金侃, 张军, 郑成航, 等. 百万燃煤机组烟气污染物超低排放改造费效评估[J]. 环境工程学报, 2017, 11(2): 1061-1068. doi: 10.12030/j.cjee.201510024
[21] 尹连庆, 殷春肖, 赵浩宁. 燃煤工业锅炉PM2.5排放规律[J]. 环境工程学报, 2014, 8(5): 2020-2024.
[22] LIU J, WANG J, CHENG J, et al. Distribution and emission of speciated volatile organic compounds from a coal-fired power plant with ultra-low emission technologies[J]. Journal of Cleaner Production, 2020, 264(121686): 1-9.
[23] CÓRDOBA P. Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs[J]. Fuel, 2015, 144: 274-2786. doi: 10.1016/j.fuel.2014.12.065
[24] MEIJ R, TE WINKEL H. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations[J]. Atmospheric Environment, 2007, 41(40): 9262-9272. doi: 10.1016/j.atmosenv.2007.04.042
[25] MA S, LIU C, SUN Y, et al. Advanced treatment technology for FGD wastewater in coal-fired power plants: Current situation and future prospects[J]. Desalination and Water Treatment, 2019, 167: 122-1232. doi: 10.5004/dwt.2019.24630
[26] 徐煜, 吴家全, 衣守志. 芳烃化合物水溶解度及分配系数的估算[J]. 环境科学与技术, 2010, 33(7): 111-114.
[27] GARCIA J P, BEYNE-MASCLET S, MOUVIER G, et al. Emissions of volatile organic compounds by coal-fired power stations[J]. Atmospheric Environment, 1992, 26(9): 1589-1597. doi: 10.1016/0960-1686(92)90059-T
[28] FERNÁNDEZ-MARTÍNEZ G, LÓPEZ-MAHÍA P, MUNIATEGUI-LORENZO S, et al. Distribution of volatile organic compounds during the combustion process in coal-fired power stations[J]. Atmospheric Environment, 2001, 35(33): 5823-5831. doi: 10.1016/S1352-2310(01)00282-5
[29] 余化龙. 燃煤过程中挥发性有机物排放特征研究[D]. 北京: 华北电力大学, 2018.
[30] HUI L, LIU X, TAN Q, et al. Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China[J]. Atmospheric Environment, 2018, 192: 55-71. doi: 10.1016/j.atmosenv.2018.08.042
[31] 李国昊, 魏巍, 魏峰, 等. 夏秋季节焦化厂附近大气中臭氧及其前体物变化特征和臭氧生成潜势分析[J]. 环境工程学报, 2014, 8(3): 1130-1138.
[32] CARTER W L. Development of ozone reactivity scales for volatile organic compounds[J]. Technical Paper, 1994, 44: 881-899.
[33] GENG C, YANG W, SUN X, et al. Emission factors, ozone and secondary organic aerosol formation potential of volatile organic compounds emitted from industrial biomass boilers[J]. Journal of Environmental Sciences(China), 2019, 83: 64-72. doi: 10.1016/j.jes.2019.03.012
[34] OU J, ZHENG J, LI R, et al. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China[J]. Science of the Total Environment, 2015, 530/531: 393-402. doi: 10.1016/j.scitotenv.2015.05.062
[35] BARABAD M L M, JUNG W, VERSOZA M E, et al. Emission characteristics of particulate matter, volatile organic compounds, and trace elements from the combustion of coals in Mongolia[J]. International Journal of Environmental Research and Public Health, 2018, 15(8): 1-11.
[36] SANTOS C Y M, AZEVEDO D D, AQUINO NETO F R. Atmospheric distribution of organic compounds from urban areas near a coal-fired power station[J]. Atmospheric Environment, 2004, 38(9): 1247-1257. doi: 10.1016/j.atmosenv.2003.11.026
[37] KLIMONT Z, STREETS DAVID G, GUPTA S, et al. Anthropogenic emissions of non-methane volatile organic compounds in China[J]. Atmospheric Environment, 2002, 36: 1309-1322. doi: 10.1016/S1352-2310(01)00529-5
[38] YAN Y, YANG C, PENG L, et al. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China[J]. Atmospheric Environment, 2016, 143: 261-269. doi: 10.1016/j.atmosenv.2016.08.052
[39] WU R, BO Y, LI J, et al. Method to establish the emission inventory of anthropogenic volatile organic compounds in China and its application in the period 2008–2012[J]. Atmospheric Environment, 2016, 127: 244-254. doi: 10.1016/j.atmosenv.2015.12.015
[40] QIU K, YANG L, LIN J, et al. Historical industrial emissions of non-methane volatile organic compounds in China for the period of 1980–2010[J]. Atmospheric Environment, 2014, 86: 102-112. doi: 10.1016/j.atmosenv.2013.12.026