[1] 郝吉明, 马广大, 王书肖. 大气污染控制工程[M]. 北京: 高等教育出版社, 2010: 414-416.
[2] LEE C R, YOO C I, LEE J H, et al. Hematological changes of children exposed to volatile organic compounds containing low levels of benzene[J]. Science of the Total Environment, 2002, 299(1/2/3): 237-245.
[3] ZHANG X M, XUE Z G, LI H, et al. Ambient volatile organic compounds pollution in China[J]. Journal of Environmental Sciences, 2017, 55(5): 69-75.
[4] 吴永文, 李忠, 奚红霞, 等. VOCs污染控制技术与吸附催化材料[J]. 离子交换与吸附, 2003, 19(1): 88-95. doi: 10.3321/j.issn:1001-5493.2003.01.015
[5] 杨一鸣, 崔积山, 童莉, 等. 美国VOCs定义演变历程对我国VOCs环境管控的启示[J]. 环境科学研究, 2017, 30(3): 368-379.
[6] 唐其文, 吴艳. 挥发性有机物VOCs监测方法及治理研究[J]. 环境与发展, 2018, 30(6): 159-161.
[7] EVERAERT K, BAEYENS J. Catalytic combustion of volatile organic compounds[J]. Journal of Hazardous Materials, 2004, 109(1/2/3): 113-139.
[8] 黎维彬, 龚浩. 催化燃烧去除VOCs污染物的最新进展[J]. 物理化学学报, 2010, 26(4): 885-894. doi: 10.3866/PKU.WHXB20100436
[9] 席劲瑛, 武俊良, 胡洪营, 等. 工业VOCs气体处理技术应用状况调查分析[J]. 中国环境科学, 2012, 32(11): 1955-1960. doi: 10.3969/j.issn.1000-6923.2012.11.005
[10] EINAGA H, TERAOKA Y, OGATA A. Catalytic oxidation of benzene by ozone over manganese oxides supported on USY zeolite[J]. Journal of Catalysis, 2013, 305(1): 227-237.
[11] 黄金花, 叶丽萍, 罗勇. MOx/Y催化剂常温催化臭氧氧化甲苯的性能[J]. 精细化工, 2019, 36(6): 1132-1137.
[12] 张静, 杜亚威, 刘晓静, 等. 臭氧微气泡处理酸性大红3R废水特性研究[J]. 环境科学, 2015, 36(2): 584-589.
[13] HU L M, XIA Z R. Application of ozone micro-nano-bubbles to groundwater remediation[J]. Journal of Hazardous Materials, 2018, 342: 446-453. doi: 10.1016/j.jhazmat.2017.08.030
[14] CHU L B, YAN S T, XING X H, et al. Enhanced sludge solubilization by microbubble ozonation[J]. Chemosphere, 2008, 72(2): 205-212. doi: 10.1016/j.chemosphere.2008.01.054
[15] 刘春, 庞晓克, 高立涛, 等. 水介质中微气泡臭氧化处理高浓度甲苯气体[J]. 环境工程学报, 2019, 13(1): 116-124. doi: 10.12030/j.cjee.201808174
[16] 李珊珊. 纳米MnO2催化臭氧氧化乙酸乙酯研究[D]. 北京: 北京化工大学, 2019.
[17] 宋仁元, 张亚杰, 王唯一, 等. 水和废水标准检验法[M]. 北京: 中国建筑工业出版社, 1985: 368-370.
[18] BADER H, HOIGNÉ J. Determination of ozone in water by the indigo method[J]. Water Research, 1981, 15(4): 449-456. doi: 10.1016/0043-1354(81)90054-3
[19] FONTMORIN J M, BURGOS Castillo R C. Stability of 5, 5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction[J]. Water Research, 2016, 99(1): 24-32.
[20] TAKAHASHI M, CHIBA K, LI P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. Physical Chemistry B, 2007, 111(6): 1343-1347. doi: 10.1021/jp0669254
[21] LI P, TAKAHASHI M, CHIBA K. Degradation of phenol by the collapse of microbubbles[J]. Chemosphere, 2009, 75(10): 1371-1375. doi: 10.1016/j.chemosphere.2009.03.031
[22] LIU Y N, ZHANG H, SUN J H, et al. Degradation of aniline in aqueous solution using non-thermal plasma generated in microbubbles[J]. Chemical Engineering Journal, 2018, 345: 679-687. doi: 10.1016/j.cej.2018.01.057
[23] 钟理, 张浩, 陈英, 等. 臭氧在水中的自分解动力学及反应机理[J]. 华南理工大学学报(自然科学版), 2002, 30(2): 83-86.
[24] 谭桂霞, 陈烨璞, 徐晓萍. 臭氧在气态和水溶液中的分解规律[J]. 上海大学学报(自然科学版), 2005, 11(5): 510-512.
[25] KIM M S, CHA D W, LEE K M, et al. Modeling of ozone decomposition, oxidant exposures, and the abatement of micropollutants during ozonation processes[J]. Water Research, 2020, 169: 115230. doi: 10.1016/j.watres.2019.115230
[26] TAKAHASHI M, CHIBA K, LI P. Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions[J]. Physical Chemistry B, 2007, 111(39): 11443-11446. doi: 10.1021/jp074727m
[27] ZHANG J, HUANG G Q, LIU C, et al. Synergistic effect of microbubbles and activated carbon on the ozonation treatment of synthetic dyeing wastewater[J]. Separation and Purification Technology, 2018, 201(1): 10-18.