[1] HU H W, WANG J T, LI J, et al. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils[J]. Environmental Microbiology, 2016, 18(11): 3896 − 3909. doi: 10.1111/1462-2920.13370
[2] LAFFITE A, KILUNGA P I, KAYEMBE J M, et al. Hospital effluents are one of several sources of metal, antibiotic resistance genes, and bacterial markers disseminated in sub-Saharan urban rivers[J]. Frontiers in Microbiology, 2016, 7: 1128.
[3] MOSKVITCH K. UK prize lets public decide on world’s biggest science problem[J]. Nature, 2014.
[4] HSU J T, CHEN C Y, YOUNG C W, et al. Prevalence of sulfonamide resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan[J]. Journal of Hazardous Materials, 2014, 227: 34 − 43.
[5] BENGTSSON-PALME J, BOULUND F, FICK J, et al. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India[J]. Frontiers in Microbiology, 2014, 5: e648.
[6] USHIDA K, SEGAWA T, KOHSHIMA S, et al. Application of real-time PCR array to the multiple detection of antibiotic resistant genes in glacier ice samples[J]. Journal of General and Applied Microbiology, 2010, 56(1): 43 − 52. doi: 10.2323/jgam.56.43
[7] SEGAWA T, TAKEUCHI N, RIVERA A, et al. Distribution of antibiotic resistance genes in glacier environments[J]. Environmental Microbiology Reports, 2013, 5(1): 127 − 134. doi: 10.1111/1758-2229.12011
[8] VAN GOETHEM MW, PIERNEEF R, BEZUIDT O K I, et al. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils[J]. Microbiome, 2018, 6: 40. doi: 10.1186/s40168-018-0424-5
[9] WANG F, STEDTFELD R D, KIM O S, et al. Influence of soil characteristics and proximity to Antarctic research stations on abundance of antibiotic resistance genes in soils[J]. Environmental Science & Technology, 2016, 50(23): 12621 − 12629.
[10] OKUBO T, AE R, NODA J, et al. Detection of the sul2-strA-strB gene cluster in an ice core from Dome Fuji Station, East Antarctica[J]. Journal of Global Antimicrobial Resistance, 2019, 17: 72 − 78. doi: 10.1016/j.jgar.2018.11.005
[11] CZEKALSKI N, GASCÓN DÍEZ E, BÜRGMANN H. Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake[J]. The ISME Journal, 2014, 8: 1381 − 1390. doi: 10.1038/ismej.2014.8
[12] ZHOU T, LU J J, TONG Y B, et al. Distribution of antibiotic resistance genes in Bosten Lake, Xinjiang, China[J]. Water Science & Technology, 2014, 70(5): 925 − 931.
[13] BERG J, THORSEN M K, HOLM P E, et al. Cu exposure under field conditions coselects for antibiotic resistance as determined by a novel cultivation-independent bacterial community tolerance assay[J]. Environmental Science & Technology, 2010, 44(22): 8724 − 8728.
[14] CESARE A D, ECKERT E M, DURSO S, et al. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants[J]. Water Research, 2016, 94: 208 − 214. doi: 10.1016/j.watres.2016.02.049
[15] JANG H M, LEE J, CHOI S, et al. Response of antibiotic and heavy metal resistance genes to two different temperature sequences in anaerobic digestion of waste activated sludge[J]. Bioresource Technology, 2018, 267: 303 − 310. doi: 10.1016/j.biortech.2018.07.051
[16] CUI E P, WU Y, JIAO Y N, et al. The behavior of antibiotic resistance genes and arsenic influenced by biochar during different manure composting[J]. Environmental Science and Pollution Research, 2017, 24(16): 14484 − 14490. doi: 10.1007/s11356-017-9028-z
[17] SANDBERG K D, ISHII S, LAPARA T M. A microfluidic quantitative polymerase chain reaction method for the simultaneous analysis of dozens of antibiotic resistance and heavy metal resistance genes[J]. Environmental Science & Technology Letters, 2018, 5(1): 20 − 25.
[18] YANG Y Y, XU C, CAO X H, et al. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact[J]. Ecotoxicology, 2017, 26(6): 831 − 840. doi: 10.1007/s10646-017-1814-3
[19] 刘亚平. 喜马拉雅山中段和东天山雪冰痕量元素环境记录研究[D]. 北京: 中国科学院大学, 2010.
[20] ROOSA S, WATTIEZ R, PRYGIEL E, et al. Bacterial metal resistance genes and metal bioavailability in contaminated sediments[J]. Environmental Pollution, 2014, 189: 143 − 151. doi: 10.1016/j.envpol.2014.02.031
[21] PITKÄNEN L K, TAMMINEN M, HYNNINEN A, et al. Fish farming affects the abundance and diversity of the mercury resistance merA in marine sediments[J]. Microbes and Environments, 2001, 26(3): 205 − 211.
[22] ZHOU Q, WANG M Z, ZHONG X X, et al. Dissemination of resistance genes in duck/fish polyculture ponds in Guangdong Province: correlations between Cu and Zn and antibiotic resistance genes[J]. Environmental Science and Pollution Research, 2019, 26(8): 8182 − 8193. doi: 10.1007/s11356-018-04065-2
[23] XIONG W G, ZENG Z L, ZHANG Y M, et al. Fate of metal resistance genes in arable soil after manure application in a microcosm study[J]. Ecotoxicology and Environmental Safety, 2015, 113: 59 − 63. doi: 10.1016/j.ecoenv.2014.11.026
[24] HENSLEY M P, GUNASEKERA T S, EASTON J A, et al. Characterization of Zn(II)-responsive ribosomal proteins YkgM and L31 in E. coli[J]. Journal of Inorganic Biochemistry, 2012, 111: 164 − 172. doi: 10.1016/j.jinorgbio.2011.11.022
[25] BIELASZEWSKA M, MELLMANN A, ZHANG W, et al. Characterisation of the Escherichia coli strain associated with an outbreak of haemolyticuraemic syndrome in Germany, 2011: a microbiological study[J]. The Lancet Infectious Diseases, 2011, 11(9): 671 − 676. doi: 10.1016/S1473-3099(11)70165-7
[26] PATRA RC, MALIK S, BEER M. Molecular characterization of chromium (VI) reducing potential in Gram positive bacteria isolated from contaminated sites[J]. Soil Biology & Biochemistry, 2010, 42(10): 1857 − 1863.
[27] TONG Y, ZHAI Q, WANG G, et al. System-wide analysis of manganese starvation induced metabolism in key elements of Lactobacillus plantarum[J]. RSC Advances, 2017, 7: 12959 − 12968. doi: 10.1039/C7RA00072C
[28] XIA L N, LI L, WU C M, et al. A survey of plasmid-mediated fluoroquinolone resistance genes from Escherichia coli isolates and their dissemination in Shandong, China[J]. Foodborne Pathogens and Disease, 2010, 7(2): 207 − 215. doi: 10.1089/fpd.2009.0378
[29] CHEN X, ZHANG W Q, PAN W J, et al. Prevalence of qnr, aac (6′)-Ib-cr, qepA, and oqxAB in Escherichia coli isolates from humans, animals, and the environment[J]. Antimicrobial Agents and Chemotherapy, 2012, 56(6): 3423 − 3427. doi: 10.1128/AAC.06191-11
[30] He X L, XU Y B, CHEN J L, et al. Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals[J]. Water Research, 2017, 124: 39 − 48. doi: 10.1016/j.watres.2017.07.048
[31] 刘锐. 规模化猪场废水典型抗生素抗性基因的调查研究[J]. 家畜生态学报, 2017, 38(11): 68 − 71. doi: 10.3969/j.issn.1673-1182.2017.11.013
[32] NG LK, MARTIN I, ALFA M, et al. Multiplex PCR for the detection of tetracycline resistant genes[J]. Molecular and Cellular Probes, 2001, 15(4): 209 − 215. doi: 10.1006/mcpr.2001.0363
[33] SU H C, YING G G, TAO R, et al. Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in South China[J]. Journal of Environmental Monitoring, 2011, 13(11): 3229 − 3236. doi: 10.1039/c1em10634a
[34] 任省涛, 郭夏丽, 芦阿虔, 等. 林可霉素菌渣堆肥抗生素抗性基因变化分析[J]. 中国环境科学, 2018, 38(11): 4276 − 4283. doi: 10.3969/j.issn.1000-6923.2018.11.037
[35] LUO Y, MAO D, RYSZ M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 2010, 44(19): 7220 − 7225.
[36] HE L Y, LIU Y S, SU H C, et al. Dissemination of antibiotic resistance genes in representative broiler feedlots environments: identification of indicator ARGs and correlations with environmental variables[J]. Environmental Science & Technology, 2014, 48(22): 13120 − 13129.
[37] BARRAUD O, BACLET M C, DENIS F. Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons[J]. Journal of Antimicrobial Chemotherapy, 2010, 65(8): 1642 − 1645. doi: 10.1093/jac/dkq167
[38] SONG Y, KONG Y L, WANG J C, et al. Identification of the produced volatile organic compounds and the involved soil bacteria during decomposition of watermelon plant residues in a Fusarium-infested soil[J]. Geoderma, 2018, 315: 178 − 187. doi: 10.1016/j.geoderma.2017.11.021
[39] YANG Y Y, LIU G H, YE C, et al. Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan Plateau[J]. Journal of Hazardous Materials, 2019, 5: 283 − 293.
[40] 方精云. 北极冻土的化学元素背景及其分布特征[J]. 环境科学学报, 2000, 20(1): 69 − 75. doi: 10.3321/j.issn:0253-2468.2000.01.014
[41] SEILER C, BERENDONK T U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture[J]. Frontiers in Microbiology, 2012, 3: 399.
[42] JI X, SHEN Q, LIU F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai, China[J]. Journal of Hazardous Materials, 2012, 235–236: 178 − 185.
[43] HUANG J, KANG S C, ZHANG Q G, et al. Spatial distribution and magnification processes of mercury in snow from high-elevation glaciers in the Tibetan Plateau[J]. Atmospheric Environment, 2012, 46: 140 − 146. doi: 10.1016/j.atmosenv.2011.10.008
[44] VANDE VELDE K P, FERRARI C P, BARBANTE C, et al. A 200 year record of atmospheric cobalt, chromium, molybdenum and antimony in high altitude alpine firn and ice[J]. Environmental Science & Technology, 1999, 33: 3495 − 3501.
[45] 汪大立, 康建成, 孙波, 等. 南极中山站至内陆冰盖330 km剖面表面雪样微粒分布特征及其意义[J]. 冰川冻土, 2000, 22(2): 128 − 134. doi: 10.3969/j.issn.1000-0240.2000.02.005
[46] ZHANG Y, KANG S, CHEN P, et al. Records of anthropogenic antimony in the glacial snow from the southeastern Tibetan Plateau[J]. Journal of Asian Earth Science, 2016, 131: 62 − 71. doi: 10.1016/j.jseaes.2016.09.007
[47] CHRISTNER BC. Recovery and identification of viable bacteria immured in glacial ice[J]. Icarus, 2000, 144: 479 − 485. doi: 10.1006/icar.1999.6288
[48] SUN M, YE M, SCHWAB A P, et al. Human migration activities drive the fluctuation of ARGs: Case study of landfills in Nanjing, eastern China[J]. Journal of Hazardous Materials, 2016, 315: 93 − 101. doi: 10.1016/j.jhazmat.2016.04.077
[49] CHEN B, LLIANG X, HUANG X, et al. Differentiating anthropogenic impacts on ARGs in the Pearl River Estuary by using suitable gene indicators[J]. Water Research, 2013, 47(8): 2811 − 2820. doi: 10.1016/j.watres.2013.02.042
[50] BACCOLO G, DI MAURO B, MASSABÒD, et al. Cryoconite as a temporary sink for anthropogenic species stored in glaciers[J]. Scientific Reports, 2017, 7: 9623. doi: 10.1038/s41598-017-10220-5