[1] SHENG P, YU Y Z, ZHANG G H, et al. Bacterial diversity and distribution in seven different estuarine sediments of Poyang Lake, China[J]. Springer Berlin Heidelberg, 2016, 75(6): 425-436.
[2] HUANG R, ZHAO D Y, JIANG C L, et al. Heterogeneity of bacterial community compositions in surface sediments of three lake zones in Lake Taihu[J]. Springer India, 2015, 85(2): 34-42.
[3] 薛银刚, 刘菲, 江晓栋, 等. 太湖不同湖区冬季沉积物细菌群落多样性[J]. 中国环境科学, 2018, 38(2): 719-728. doi: 10.3969/j.issn.1000-6923.2018.02.037
[4] 赵大勇, 孙一萌, 方超, 等. 太湖梅梁湾不同深度沉积物中细菌群落结构组成[J]. 河海大学学报(自然科学版), 2013, 41(4): 283-287.
[5] 寄博华, 李玮, 常军军, 等. 滇池湖滨湿地不同挺水植物区沉积物细菌群落结构特征[J/OL]. [2020-03-31]. https://doi.org/10.19741/j.issn.1673-4831.pdf, 2019.
[6] JIN X, MA Y, KONG Z Y, et al. The variation of sediment bacterial community in response to anthropogenic disturbances of Poyang Lake, China[J]. Wetlands: Official Scholarly Journal of the Society of Wetland Scientists, 2019, 39(1): 63-73.
[7] WAN Y, BAI Y, HE J, et al. Temporal and spatial variations of aquatic environmental characteristics and sediment bacterial community in five regions of Lake Taihu[J]. Aquatic Ecology, 2017, 51(3): 35-45.
[8] 周石磊, 孙悦, 岳哿丞, 等. 雄安新区-白洋淀冬季冰封期水体好氧反硝化菌群落空间分布特征及驱动因素[J/OL]. [2020-03-24]. https://doi.org/10.13227/j.hjkx.pdf, 2019.
[9] 刘鑫, 史斌, 孟晶, 等. 白洋淀水体富营养化和沉积物污染时空变化特征[J/OL]. [2020-04-09]. https://doi.org/10.13227/j.hjkx.pdf, 2019.
[10] 水质化学需氧量的测定-快速消解分光光度法: HJ/T 399-2007[S]. 北京: 中国环境科学出版社, 2007.
[11] 水质总氮的测定-碱性过硫酸钾消解紫外分光光度法: HJ 636-2012[S]. 北京: 中国环境科学出版社, 2012.
[12] 水质 氨氮的测定 纳氏试剂分光光度法: HJ 535-2009[S]. 北京, 中国环境科学出版社, 2009.
[13] 水质 硝酸盐氮的测定 紫外分光光度法: HJ/T 346-2007[S]. 北京: 中国环境科学出版社, 2007.
[14] 水质 总磷的测定 钼酸铵分光光度法: GB 11893-1989[S]. 北京: 中国环境科学出版社, 1989.
[15] 土壤质量 全氮的测定凯氏法: HJ 717-2014[S]. 北京: 中国环境科学出版社, 2014.
[16] 土壤 氨氮、亚硝酸盐氮、硝酸盐氮的测定 氯化钾溶液提取-分光光度法: HJ 634-2012[S]. 北京: 中国环境科学出版社, 2012.
[17] 土壤 总磷的测定 碱熔-钼锑抗分光光度法: HJ 632-2011[S]. 北京: 中国环境科学出版社, 2011.
[18] 总有机碳(TOC)水质自动分析仪技术要求: HJ/T 104-2003[S]. 北京: 中国环境科学出版社, 2003.
[19] 冯胜, 秦伯强, 高光. 细菌群落结构对水体富营养化的响应[J]. 环境科学学报, 2007, 52(11): 1823-1829. doi: 10.3321/j.issn:0253-2468.2007.11.012
[20] DAI Y, YANG Y Y, WU Z, et al. Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status[J]. Applied Microbiology and Biotechology, 2016, 100(9): 4161-4175. doi: 10.1007/s00253-015-7253-2
[21] YANG J, JIANG H, WU G, et al. Distinct factors shape aquatic and sedimentary microbial community structures in the lakes of western China[J]. Frontiers Microbiology, 2016, 42(7): 1772-1782.
[22] 邹沈娟. 湖北省三座湖泊水体和沉积物微生物群落特征的研究[D]. 武汉: 华中农业大学, 2019.
[23] SCHREIER H J, MIRZOYAN N, SAITO K. Microbial diversity of biological Filters in recirculating aquaculture systems[J]. Current Opinion in Biotechnology, 2010, 21(3): 318-325. doi: 10.1016/j.copbio.2010.03.011
[24] ZHANG J X, YANG Y Y, ZHAO L, et al. Distribution of sediment bactetial and archaeal communities in plateau freshwater lakes[J]. Applied Microbiology and Biotechnology, 2015, 99(7): 3291-3302. doi: 10.1007/s00253-014-6262-x
[25] 赵忠, 滕飞, 李卫平, 等. 包头南海湖不同湖区春季沉积物细菌群落结构[J]. 灌溉排水学报, 2019, 38(6): 99-104.
[26] BOWMAN J P, MCCUAIG R D. Biodiversity, community structural shifts, and biogeography of prokaryotes within antarctic continental shelf sediment[J]. Applied and Environmental Microbiology, 2003, 69(5): 2463-2483. doi: 10.1128/AEM.69.5.2463-2483.2003
[27] LEE S H, KA J O, CHO J C. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil[J]. FEMS Microbiology Letters, 2008, 285(2): 263-269. doi: 10.1111/j.1574-6968.2008.01232.x
[28] ZENG Y H, BAUMBACH J, BARBOSA E G V, et al. Metagenomic evidence for the presence of phototrophic Gemmatimonadetes bacteria in diverse environments[J]. Environmental Microbiology Reports, 2016, 48(3): 139-149.
[29] GOFFREDI S K, ORPHAN V J. Bacterial community shifts in taxa and diversity in response to localized organic loading in the deep sea[J]. Environmental Microbiology, 2010, 34(12): 344-363.
[30] MARTINS G, TERADA A, RIBEIRO D C, et al. Structure and activity of lacustrine sediment bacteria involved in nutrient and iron cycles[J]. FEMS Microbiology Ecology, 2011, 77(3): 666-679. doi: 10.1111/j.1574-6941.2011.01145.x
[31] 李真, 黄民生, 何岩, 等. 铁和硫的形态转化与水体黑臭的关系[J]. 环境科学与技术, 2010, 33(6): 1-7.
[32] 杨浩, 张国珍, 杨晓妮, 等. 16S rRNA 高通量测序研究集雨窖水中微生物群落结构及多样性[J]. 环境科学, 2017, 38(4): 1704-1716.