[1] |
廉拓, 杨年生, 于越, 等. 模拟苯酚废水高级氧化降解与测定初探[J]. 教育教学论坛, 2015(15): 229-230. doi: 10.3969/j.issn.1674-9324.2015.15.106
|
[2] |
刘佳琦. 含酚废水处理技术研究[J]. 环境科学与管理, 2018, 43(9): 111-114. doi: 10.3969/j.issn.1673-1212.2018.09.026
|
[3] |
国家环境保护总局. 污水综合排放标准: GB 8978-1996[S]. 北京: 中国标准出版社, 1996.
|
[4] |
WANG C T, CHOU W L, KUO Y M, et al. Paired removal of color and COD from textile dyeing wastewater by simultaneous anodic and indirect cathodic oxidation[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 16-22.
|
[5] |
陈蕾, 王志鹏. 电化学高级氧化技术处理难降解有机废水的影响因素[J]. 应用化工, 2019, 48(1): 1-5. doi: 10.3969/j.issn.1671-3206.2019.01.001
|
[6] |
徐士鸣, 吴曦, 冷强. 一种利用低品位热能氧化降解有机废水的方法CN201711384061.2[P]. 2017-12-20.
|
[7] |
徐士鸣, 徐志杰, 吴曦, 等. 溶液浓差能驱动的逆电渗析有机废水氧化降解机理研究[J]. 环境科学学报, 2018, 38(12): 4642-4651.
|
[8] |
徐士鸣, 冷强, 吴曦, 等. 逆电渗析反应器阴、阳极联合降解酸性橙Ⅱ实验研究[J]. 环境科学学报, 2019, 39(7): 2163-2171.
|
[9] |
XU S, LENG Q, JIN D, et al. Experimental investigation on dye wastewater treatment with reverse electrodialysis reactor powered by salinity gradient energy[J]. Desalination, 2020, 49: 114541.
|
[10] |
KHAWAJI A D, KUTUBKHANAH I K, WIE J M. Advances in seawater desalination technologies[J]. Desalination, 2008, 221: 47-69. doi: 10.1016/j.desal.2007.01.067
|
[11] |
XU S, XU L, WU X, et al. Air-gap diffusion distillation: Theory and experiment[J]. Desalination, 2019, 467: 64-78. doi: 10.1016/j.desal.2019.05.014
|
[12] |
王世昌, 解利昕, 李凭力. 海水淡化技术现状及各种淡化方法评述[J]. 化工进展, 2003, 22(10): 1081-1084. doi: 10.3321/j.issn:1000-6613.2003.10.011
|
[13] |
D'ANGELO A. Reverse electrodialysis process for the production of chemicals and the treatment of contaminated wastewater[D]. Italy: Università degli Studi di Palermo, 2016.
|
[14] |
SCIALDONE O, D'ANGELO A, GALIA A. Energy generation and abatement of acid orange 7 in reverse electrodialysis cells using salinity gradients[J]. Journal of Electroanalytical Chemistry, 2015, 738: 61-68. doi: 10.1016/j.jelechem.2014.11.024
|
[15] |
SCIALDONE O, D'ANGELO A, PASTORELLA G, et al. Electrochemical processes and apparatuses for the abatement of acid orange 7 in water[J]. Chemical Engineering Transactions, 2014, 41: 31-36.
|
[16] |
SCIALDONE O, D'ANGELO A, DE LUMÈ E, et al. Utilization of reverse electrodialysis processes for the abatement of pollutants in water[J]. Chemical Engineering Transactions, 2014, 41: 139-144.
|
[17] |
SCIALDONE O, D'ANGELO A, DE LUMÈ E, et al. Cathodic reduction of hexavalent chromium coupled with electricity generation achieved by reverse-electrodialysis processes using salinity gradients[J]. Electrochimica Acta, 2014, 137: 258-265. doi: 10.1016/j.electacta.2014.06.007
|
[18] |
ZHOU Y, ZHAO K, HU C, et al. Electrochemical oxidation of ammonia accompanied with electricity generation based on reverse electrodialysis[J]. Electrochimica Acta, 2018, 269: 128-135. doi: 10.1016/j.electacta.2018.02.136
|
[19] |
TEDESCO M, BRAUNS E, CIPOLLINA A, et al. Reverse Electrodialysis with saline waters and concentrated brines: A laboratory investigation towards technology scale-up[J]. Journal of Membrane Science, 2015, 492: 9-20. doi: 10.1016/j.memsci.2015.05.020
|
[20] |
HU J, XU S, WU X, et al. Multi-stage reverse electrodialysis: Strategies to harvest salinity gradient energy[J]. Energy Conversion and Management, 2019, 183: 803-815. doi: 10.1016/j.enconman.2018.11.032
|
[21] |
HU J, XU S, WU X, et al. Exergy analysis for the multi-effect distillation-reverse electrodialysis heat engine[J]. Desalination, 2019, 467: 158-169. doi: 10.1016/j.desal.2019.06.007
|
[22] |
TEDESCO M, HAMELERS H V M, BIESHEUVEL P M. Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes[J]. Journal of Membrane Science, 2016, 510: 370-381.
|
[23] |
MOYA A A. Numerical simulation of ionic transport processes through bilayer ion-exchange membranes in reverse electrodialysis stacks[J]. Journal of Membrane Science, 2017, 524: 400-408. doi: 10.1016/j.memsci.2016.11.051
|
[24] |
MOYA A A. A numerical comparison of optimal load and internal resistances in ion-exchange membrane systems under reverse electrodialysis conditions[J]. Desalination, 2016, 392: 25-33. doi: 10.1016/j.desal.2016.04.016
|
[25] |
PANIZZA M, CERISOLA G. Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Reviews, 2009, 109(12): 6541-6569. doi: 10.1021/cr9001319
|
[26] |
MARTÍNEZ-HUITLE C A, RODRIGO M A, SIRÉS I, et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: A critical review[J]. Chemical Reviews, 2015, 115(24): 13362-13407. doi: 10.1021/acs.chemrev.5b00361
|
[27] |
MARTÍNEZ-HUITLE C A, FERRO S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes[J]. Chemical Society Reviews, 2006, 35(12): 1324-1340. doi: 10.1039/B517632H
|
[28] |
FENG Y, YANG L, LIU J, et al. Electrochemical technologies for wastewater treatment and resource reclamation[J]. Environmental Science Water Research & Technology, 2016, 2(5): 800-831.
|
[29] |
ZHANG C, HE D, MA J, et al. Active chlorine mediated ammonia oxidation revisited: Reaction mechanism, kinetic modelling and implications[J]. Water Research, 2018, 145: 220-230. doi: 10.1016/j.watres.2018.08.025
|
[30] |
BABUPONNUSAMI A, MUTHUKUMAR K. Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes[J]. Chemical Engineering Journal, 2012, 183: 1-9. doi: 10.1016/j.cej.2011.12.010
|
[31] |
林恒, 张晖. 电-Fenton及类电-Fenton技术处理水中有机污染物[J]. 化学进展, 2015, 34(8): 1123-1132.
|
[32] |
BRILLAS E, SIRE´S I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry[J]. Chemical Reviews, 2009, 109(12): 6570. doi: 10.1021/cr900136g
|
[33] |
PIMENTEL M, OTURAN N, DEZOTTI M, et al. Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode[J]. Science Direct, 2008, 83: 140-149.
|
[34] |
班福忱, 刘炯天, 程琳, 等. 阴极电芬顿法处理苯酚废水的研究[J]. 工业安全与环保, 2009, 35(9): 25-27. doi: 10.3969/j.issn.1001-425X.2009.09.011
|
[35] |
PANIZZA M, CERISOLA G. Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine[J]. Electrochimica Acta, 2003, 48(11): 1515-1519. doi: 10.1016/S0013-4686(03)00028-8
|
[36] |
WANG C T, HU J L, CHOU W L, et al. Removal of color from real dyeing wastewater by electro-Fenton technology using a three-dimensional graphite cathode[J]. Journal of Hazardous Materials, 2008, 152(2): 601-606. doi: 10.1016/j.jhazmat.2007.07.023
|
[37] |
ROSALES E, PAZOS M, LONGO M A, et al. Electro-Fenton decoloration of dyes in a continuous reactor: A promising technology in colored wastewater treatment[J]. Chemical Engineering Journal, 2009, 155: 62-67. doi: 10.1016/j.cej.2009.06.028
|
[38] |
徐士鸣, 张凯, 吴曦, 等. 电流与浓差对逆电渗析电堆内质量传递的影响[J]. 化工学报, 2018, 69(10): 76-85.
|
[39] |
徐士鸣, 刘志强, 吴曦, 等. 溶液浓差能驱动的逆电渗析反应器制氢实验研究[J]. 化工学报, 2020, 71(5): 2283-2291.
|