[1] KHAN M Z, MONDAL P K, SABIR S. Aerobic granulation for wastewater bioremediation: A review[J]. Canadian Journal of Chemical Engineering, 2013, 91(6): 1045-1058.
[2] KONG Q, NGO H H, SHU L, et al. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor[J]. Journal of Hazardous Materials, 2014, 279: 511-517.
[3] PRONK M, BASSIN J P, DE KREUK M K, et al. Evaluating the main and side effects of high salinity on aerobic granular sludge[J]. Applied Microbiology and Biotechnology, 2014, 98(3): 1339-1348.
[4] DING Z J, BOURVEN I, GUIBAUD G, et al. Role of extracellular polymeric substances (EPS) production in bioaggregation: Application to wastewater treatment[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 9883-9905.
[5] WANG Z P, LIU L L, YAO J, et al. Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors[J]. Chemosphere, 2006, 63(10): 1728-1735.
[6] JIANG B, LIU Y. Roles of ATP-dependent N-acylhomoserine lactones (AHLs) and extracellular polymeric substances (EPSs) in aerobic granulation[J]. Chemosphere, 2012, 88(9): 1058-1064.
[7] OLIVEIRA A S, AMORIM C L, RAMOS M A, et al. Variability in the composition of extracellular polymeric substances from a full-scale aerobic granular sludge reactor treating urban wastewater[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104156.
[8] LIN Y M, DE KREUK M, VAN LOOSDRECHT M C M, et al. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant[J]. Water Research, 2010, 44(11): 3355-3364.
[9] TAY J H, LIU Q S, LIU Y. The role of cellular polysaccharides in the formation and stability of aerobic granules[J]. Letters in Applied Microbiology, 2001, 33(3): 222-226.
[10] WANG Z W, LIU Y, TAY J H. Distribution of EPS and cell surface hydrophobicity in aerobic granules[J]. Applied Microbiology and Biotechnology, 2006, 69(4): 469-473.
[11] ADAV S S, LEE D J, SHOW K Y, et al. Aerobic granular sludge: Recent advances[J]. Biotechnology Advances, 2008, 26(5): 411-423.
[12] LIU H, FANG H H P. Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data[J]. Biotechnology and Bioengineering, 2002, 80(7): 806-811.
[13] MCSWAIN B S, IRVINE R L, HAUSNER M, et al. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge[J]. Applied and Environmental Microbiology, 2005, 71(2): 1051-1057.
[14] CHEN M Y, LEE D J, TAY J H. Distribution of extracellular polymeric substances in aerobic granules[J]. Applied Microbiology Biotechnology, 2007, 73(6): 1463-1469.
[15] 张云霞, 季民, 李超, 等. 好氧颗粒污泥胞外聚合物(EPS)的生化性研究[J]. 环境科学, 2008, 29(11): 3124-3127. doi: 10.3321/j.issn:0250-3301.2008.11.023
[16] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugar and related substances[J]. Analytical Chemistry, 1956, 28(5): 250-256.
[17] WALKER J M. The bicinchoninic acid (BCA) assay for protein quantitation[J]. Methods in Molecular Biology, 1994, 32: 5-8.
[18] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[19] 张兰河, 李军, 郭静波, 等. EPS 对活性污泥絮凝沉降性能与表面性质的影响[J]. 化工学报, 2012, 63(6): 1865-1871. doi: 10.3969/j.issn.0438-1157.2012.06.030
[20] CHEN M Y, LEE D J, TAY J H, et al. Staining of extracellular polymeric substances and cells in bioaggregates[J]. Applied Microbiology and Biotechnology, 2007, 75(2): 467-474.
[21] HAO T W. LUO J H, WEI L, et al Physicochemical and biological characterization of long-term operated sulfate reducing granular sludge in the SANI ® process[J]. Water Research, 2015, 71: 74-84.
[22] DURMAZ B, SANIN F D. Effect of carbon to nitrogen ratio on the composition of microbial extracellular polymers in activated sludge[J]. Water Science and Technology, 2001, 44(10): 221-229.
[23] 王浩宇, 苏本生, 黄丹, 等. 好氧污泥颗粒化过程中Zeta电位与EPS的变化特性[J]. 环境科学, 2012, 33(5): 1614-1620.
[24] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances(EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894.
[25] 蔡春光, 刘军深, 蔡伟民. 胞外多聚物在好氧颗粒化中的作用机理[J]. 中国环境科学, 2004, 24(5): 623-626. doi: 10.3321/j.issn:1000-6923.2004.05.027
[26] LIU Y, TAY J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Water Research, 2002, 36(7): 1653-1665.
[27] DIGANCE M F, URBAIN V, RYBACKI D, et al. Chemical description of extracellular polymers: Implication on activated sludge floc structure[J]. Water Science and Technology, 1998, 38: 45-53.
[28] 张丽丽, 陈效, 陈建孟, 等. 胞外多聚物在好氧颗粒污泥形成中的作用机制[J]. 环境科学, 2007, 28(4): 4795-4799.
[29] WHITELEY C G, LEE D J. Bacterial diguanylate cyclases: Structure, function and mechanism in exopolysaccharide biofilm development[J]. Biotechnology Advances, 2015, 33(1): 124-141.
[30] DONG J J, ZHANG Z M, YU Z D, et al. Evolution and functional analysis of extracellular polymeric substances during the granulation of aerobic sludge used to treat p-chloroaniline wastewater[J]. Chemical Engineering Journal, 2017, 330: 596-604.
[31] 吴志高. 胞外聚合物(EPS) 对污泥沉降性能的影响及其在生物除磷中的作用研究[D]. 重庆: 重庆大学, 2006.
[32] SCHMITT J, FLEMMING H C. FTIR-spectroscopy in microbial and material analysis[J]. International Biodeterioration & Biodegradation, 1998, 41(1): 1-11.
[33] BEECH I, HANJAGSIT L, KALAJI M, et al. Chemical and structural characterization of exopolymers produced by Pseudomonas sp. NCIMB 2021 in continuous culture[J]. Microbiology, 1999, 145(6): 1491-1497.
[34] DZWOLAK W, KATO M, TANIGUCHI Y. Fourier transform infrared spectroscopy in high-pressure studies on proteins[J]. Biochimica et Biophysica Acta (BBA): Protein Structure and Molecular Enzymology, 2002, 1595(1/2): 131-144.
[35] BARTH A, ZSCHERP C. What vibrations tell us about proteins[J]. Quarterly Reviews of Biophysics, 2002, 35(4): 369-430.
[36] BADIREDDY A R, KORPOL B R, CHANKARAMAN S, et al. Spectroscopic characterization of extracellular polymeric substances from Escherichia coli and Serratia marcescens: Suppression using sub-inhibitory concentrations of bismuth thiols[J]. Biomacromolecules, 2008, 9(11): 3079-3089.