[1] |
张玲, 王文文, 常红玉, 等. 抗生素废水处理方法的研究进展[J]. 广州化工, 2020, 48(5): 30-33. doi: 10.3969/j.issn.1001-9677.2020.05.016
|
[2] |
郭鹏飞, 曾旭, 姚国栋, 等. 催化湿式氧化技术用于抗生素废水处理的研究进展[J]. 河南化工, 2020, 37(2): 1-3.
|
[3] |
蒋辽川, 丁勇能, 彭学雅, 等. g-C3N4/Bi2O3复合材料的制备及其光催化降解性能的研究[J]. 广州化工, 2019, 47(18): 37-39. doi: 10.3969/j.issn.1001-9677.2019.18.017
|
[4] |
刘一鸣, 张曦, 陈芳艳, 等. Ag3PO4/Bi2O3异质结光催化剂的制备及其光催化性能研究[J]. 江苏科技大学学报(自然科学版), 2019, 33(5): 89-96.
|
[5] |
PENG D J, ZOU Z G, LONG F, et al. Solid state synthesis of nonstoichiometric Bi2WO6/Bi2O3 composites as visible-light photocatalyst[J]. Ionics, 2016, 22(12): 2347-2353. doi: 10.1007/s11581-016-1762-6
|
[6] |
SAISON T, CHEMIN N, CHANEAC C, et al. Bi2O3, BiVO4, and Bi2WO6: Impact of surface properties on photocatalytic activity under visible light[J]. Journal of Physical Chemistry C, 2011, 115(13): 5657-5666. doi: 10.1021/jp109134z
|
[7] |
LI S J, HU S W, ZHANG J L, et al. Facile synthesis of Fe2O3 nanoparticles anchored on Bi2MoO6 microflowers with improved visible light photocatalytic activity[J]. Journal of Colloid and Interface Science, 2017, 497: 93-101. doi: 10.1016/j.jcis.2017.02.069
|
[8] |
SHAN L W, WANG G L, LIU L Z, et al. Band alignment and enhanced photocatalytic activation for alpha-Bi2O3/BiOCl(001) core-shell heterojunction[J]. Journal of Molecular Catalysis A: Chemical, 2015, 406: 145-151. doi: 10.1016/j.molcata.2015.05.024
|
[9] |
TANG X D, WANG Z R, WU N, et al. A novel visible-light-active beta-Bi2O3/BiOBr heterojunction photocatalyst with remarkably enhanced photocatalytic activity[J]. Catalysis Communications, 2019, 119: 119-123. doi: 10.1016/j.catcom.2018.10.025
|
[10] |
HE R A, CHENG K Y, WEI Z Y, et al. Room-temperature in situ fabrication and enhanced photocatalytic activity of direct Z-scheme BiOI/g-C3N4 photocatalyst[J]. Applied Surface Science, 2019, 465: 964-972. doi: 10.1016/j.apsusc.2018.09.217
|
[11] |
LU Y, XU L J, LIU C L, et al. Synthesis and photocatalytic activity of composite magnetic photocatalyst MnxZn1−xFe2O4/alpha-Bi2O3[J]. Materials Technology, 2019, 34(5): 301-311. doi: 10.1080/10667857.2018.1554229
|
[12] |
HU J L, LI H M, HUANG C J, et al. Enhanced photocatalytic activity of Bi2O3 under visible light irradiation by Cu(Ⅱ) clusters modification[J]. Applied Catalysis B: Environmental, 2013, 142: 598-603.
|
[13] |
XUE S S, HE H B, FAN Q Z, et al. La/Ce-codoped Bi2O3 composite photocatalysts with high photocatalytic performance in removal of high concentration dye[J]. Journal of Environmental Sciences-China, 2017, 60: 70-77. doi: 10.1016/j.jes.2016.09.022
|
[14] |
KONG J J, XIAN F L, WANG Y Q, et al. Boosting interfacial interaction in hierarchical core-shell nanostructure for highly effective visible photocatalytic performance[J]. Journal of Physical Chemistry C, 2018, 122(11): 6137-6143. doi: 10.1021/acs.jpcc.8b00040
|
[15] |
ZHANG L P, WANG G H, XIONG Z Z, et al. Fabrication of flower-like direct Z-scheme beta-Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for rhodamine B degradation[J]. Applied Surface Science, 2018, 436: 162-171. doi: 10.1016/j.apsusc.2017.11.280
|
[16] |
HE R A, ZHOU J Q, FU H Q, et al. Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity[J]. Applied Surface Science, 2018, 430: 273-282. doi: 10.1016/j.apsusc.2017.07.191
|
[17] |
王霁, 董正玉, 吴丽颖, 等. 纳米铁酸铜催化剂活化过一硫酸盐降解苯胺废水[J]. 环境污染与防治, 2019, 41(3): 334-338.
|
[18] |
CHEN X, ZHOU J B, ZHANG T L, et al. Enhanced degradation of tetracycline hydrochloride using photocatalysis and sulfate radical-based oxidation processes by Co/BiVO4 composites[J]. Journal of Water Process Engineering, 2019, 32: 1-8.
|
[19] |
WANG Y B, CAO D, ZHAO X. Heterogeneous degradation of refractory pollutants by peroxymonosulfate activated by CoOx-doped ordered mesoporous carbon[J]. Chemical Engineering Journal, 2017, 328: 1112-1121. doi: 10.1016/j.cej.2017.07.042
|
[20] |
SHAO H X, ZHAO X, WANG Y B, et al. Synergetic activation of peroxymonosulfate by Co3O4 modified g-C3N4 for enhanced degradation of diclofenac sodium under visible light irradiation[J]. Applied Catalysis B: Environmental, 2017, 218: 810-818. doi: 10.1016/j.apcatb.2017.07.016
|
[21] |
LI W, LI Y X, ZHANG D Y, et al. CuO-Co3O4@CeO2 as a heterogeneous catalyst for efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate[J]. Journal of Hazardous Materials, 2020, 381: 121209. doi: 10.1016/j.jhazmat.2019.121209
|
[22] |
YANG Z Y, DAI D J, YAO Y Y, et al. Extremely enhanced generation of reactive oxygen species for oxidation of pollutants from peroxymonosulfate induced by a supported copper oxide catalyst[J]. Chemical Engineering Journal, 2017, 322: 546-555. doi: 10.1016/j.cej.2017.04.018
|
[23] |
LI J, YE P, FANG J, et al. Peroxymonosulfate activation and pollutants degradation over highly dispersed CuO in manganese oxide octahedral molecular sieve[J]. Applied Surface Science, 2017, 422: 754-762. doi: 10.1016/j.apsusc.2017.06.118
|
[24] |
FARSHID G, NEMATOLLAH J. Graphite-supported CuO catalyst for heterogeneous peroxymonosulfate activation to oxidize direct orange 26: The effect of influential parameters[J]. Research on Chemical Intermediates, 2017, 43(8): 4623-4637. doi: 10.1007/s11164-017-2901-z
|
[25] |
白妮, 王爱民, 孙志勇, 等. 粉煤灰负载Fe2+/Cu2+非均相催化H2O2降解甲基橙研究[J]. 非金属矿, 2016, 39(5): 38-40. doi: 10.3969/j.issn.1000-8098.2016.05.013
|
[26] |
DING Y B, PAN C, PENG X Q, et al. Deep mineralization of bisphenol A by catalytic peroxymonosulfate activation with nano CuO/Fe3O4 with strong Cu-Fe interaction[J]. Chemical Engineering Journal, 2020, 384: 2-15.
|
[27] |
WANG Q, WU X Q, ZHANG L. Designed of bifunctional Z-scheme CuSnO3@Cu2O heterojunctions film for photoelectrochemical catalytic reduction and ultrasensitive sensing nitrobenzene[J]. Chemical Engineering Journal, 2019, 361: 398-407. doi: 10.1016/j.cej.2018.12.079
|
[28] |
YU J J, KIWI J, WANG T H, et al. Evidence for a dual mechanism in the TiO2/CuxO photocatalyst during the degradation of sulfamethazine under solar or visible light: Critical issues[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375: 270-279. doi: 10.1016/j.jphotochem.2019.02.033
|
[29] |
LIU W, ZHOU J B, ZHOU J. Facile fabrication of multi-walled carbon nanotubes (MWCNTs)/alpha-Bi2O3 nanosheets composite with enhanced photocatalytic activity for doxycycline degradation under visible light irradiation[J]. Journal of Materials Science, 2019, 54(4): 3294-3308. doi: 10.1007/s10853-018-3090-x
|
[30] |
REDDY K H, PARIDA K, SATAPATHY P K. CuO/PbTiO3: A new-fangled p-n junction designed for the efficient absorption of visible light with augmented interfacial charge transfer, photoelectrochemical and photocatalytic activities[J]. Journal of Materials Chemistry A, 2017, 5(38): 20359-20373. doi: 10.1039/C7TA05206E
|
[31] |
OH J T, CHOWDHURY S R, LEE T I, et al. Synergetic influence of Au/Cu2O core-shells nanoparticle on optical, photo-electrochemical, and catalytic activities of Au/Cu2O/TiO2 nanocomposite[J]. Dyes and Pigments, 2019, 160: 936-943. doi: 10.1016/j.dyepig.2018.09.003
|
[32] |
YUE Y M, ZHANG P X, WANG W, et al. Enhanced dark adsorption and visible-light-driven photocatalytic properties of narrower-band-gap Cu2S decorated Cu2O nanocomposites for efficient removal of organic pollutants[J]. Journal of Hazardous Materials, 2019, 384: 121302.
|
[33] |
PUANGPETCH T, SOMMAKETTARIN P, CHAVADE S, et al. Hydrogen production from water splitting over Eosin Y-sensitized mesoporous-assembled perovskite titanate nanocrystal photocatalysts under visible light irradiation[J]. International Journal of Hydrogen Energy, 2010, 35(22): 12428-12442. doi: 10.1016/j.ijhydene.2010.08.138
|
[34] |
SHI Y Y, LUO L J, ZHANG Y F, et al. Synthesis and characterization of porous platelet-shaped alpha-Bi2O3 with enhanced photocatalytic activity for 17 alpha-thynylestradiol[J]. Journal of Materials Science, 2018, 53(2): 1049-1064. doi: 10.1007/s10853-017-1553-0
|
[35] |
张明明, 李静, 龚焱, 等. 铁酸锰纳米球修饰石墨相氮化碳光催化活化过一硫酸盐去除双酚A[J]. 环境工程学报, 2019, 13(1): 9-19. doi: 10.12030/j.cjee.201807189
|
[36] |
YANG J L, ZHU M S, DIONYSIOU D D. What is the role of light in persulfate-based advanced oxidation for water treatment?[J]. Water Research, 2021, 189: 116627-116630.
|
[37] |
DENG J, YA C, GE Y J, et al. Activation of peroxymonosulfate by metal (Fe, Mn, Cu and Ni) doping ordered mesoporous Co3O4 for the degradation of enrofloxacin[J]. RSC Advances, 2018, 8(5): 2338-2349. doi: 10.1039/C7RA07841B
|
[38] |
HU L M, ZHANG G S, LIU M, et al. Enhanced degradation of bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation: Effects of pH, inorganic anions, and water matrix[J]. Chemical Engineering Journal, 2018, 338: 300-310. doi: 10.1016/j.cej.2018.01.016
|
[39] |
ZHANG Z Y, JIANG D l, XING C S, et al. Novel AgI-decorated beta-Bi2O3 nanosheet heterostructured Z-scheme photocatalysts for efficient degradation of organic pollutants with enhanced performance[J]. Dalton Transactions, 2015, 44(25): 11582-11591. doi: 10.1039/C5DT00298B
|
[40] |
WU K, QIN Z G, ZHANG X S, et al. Z-scheme BiOCl/Bi-Bi2O3 heterojunction with oxygen vacancy for excellent degradation performance of antibiotics and dyes[J]. Journal of Materials Science, 2020, 55(9): 4017-4029. doi: 10.1007/s10853-019-04300-2
|
[41] |
JIA S C, FENG Y T, ZHAN Q F, et al. The solvothermal synthesis of novel beta-Bi2O3/(BiO)4(OH)2CO3 heterojunctions and its photocatalytic activity[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(5): 4050-4057. doi: 10.1007/s10854-020-02952-4
|
[42] |
SHAO, B B, LIU Z F, ZENG G M, et al. Nitrogen-doped hollow mesoporous carbon spheres modified g-C3N4/Bi2O3 direct dual semiconductor photocatalytic system with enhanced antibiotics degradation under visible light[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16424-16436.
|
[43] |
LI G H, DIMITRIJEVIC N M. CHEN L, et al Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites[J]. Journal of Physical Chemistry C, 2008, 112(48): 19040-19044. doi: 10.1021/jp8068392
|
[44] |
HUANG H, MA C C, ZHU Z, et al. Insights into enhanced visible light photocatalytic activity of t-Se nanorods/BiOCl ultrathin nanosheets 1D/2D heterojunctions[J]. Chemical Engineering Journal, 2018, 338: 218-229. doi: 10.1016/j.cej.2017.12.012
|