[1] |
IPCC. Climate change 2014: The physical science basis [M]. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2014.
|
[2] |
COLE J J, CARACO N F, KLING G W, et al. Carbon dioxide supersaturation in the surface waters of lakes[J]. Science, 1994, 265(5178): 1568 − 1570. doi: 10.1126/science.265.5178.1568
|
[3] |
CURTARELLI M P, OGASHAWARA I, DE ARAÚJO, et al. Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations[J]. Science of the Total Environment, 2016, 551−552: 676 − 694. doi: 10.1016/j.scitotenv.2016.02.001
|
[4] |
RAYMOND P A, HARTMANN J, LAUERWALD R, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7476): 355 − 359. doi: 10.1038/nature12760
|
[5] |
LUNDIN E J, KLAMINDER J, BASTVIKEN D, et al. Large difference in carbon emission–burial balances between boreal and arctic lakes[J]. Scientific Reports, 2015, 5(1): 14248. doi: 10.1038/srep14248
|
[6] |
LARSEN S, ANDERSEN T, HESSEN D O. The pCO2 in boreal lakes: Organic carbon as a universal predictor?[J]. Global Biogeochemical Cycles, 2011, 25: GB2012.
|
[7] |
LI S, ZHANG Q. Partial pressure of CO2 and CO2 emission in a monsoon-driven hydroelectric reservoir (Danjiangkou Reservoir), China[J]. Ecological Engineering, 2014, 71: 401 − 414. doi: 10.1016/j.ecoleng.2014.07.014
|
[8] |
艾永平. 城市湖泊的甲烷排放时空变化及其与水文水质关系—以北京市为例[D]. 南昌: 南昌大学, 2009.
|
[9] |
杨文静. 武汉市内湖富营养化周年变化规律的监测及初步讨论[D]. 武汉: 华中农业大学, 2010.
|
[10] |
温志丹, 宋开山, 赵莹, 等. 长春城市水体夏秋季温室气体排放特征[J]. 环境科学, 2016, 37(1): 102 − 111.
|
[11] |
邢阳平. 浅水湖泊水-气界面碳循环的研究[D]. 广州: 华南热带农业大学, 2004.
|
[12] |
胡茂俊. 富营养化自然水体中气体释放特征研究[D]. 南京: 南京农业大学, 2016.
|
[13] |
LAPIERRE J F. Geographical and environmental drivers of regional differences in the lake pCO2 vs. DOC relationship across northern landscapes[J]. Journal of Geophysical Research Biogeosciences, 2015, 117(G3): 6841 − 6847.
|
[14] |
ROLAND F, VIDAL L O, PACHECO F S, et al. Variability of carbon dioxide flux from tropical (Cerrado) hydroelectric reservoirs[J]. Aquatic Sciences, 2010, 72(3): 283 − 293. doi: 10.1007/s00027-010-0140-0
|
[15] |
KLING G W, KIPPHUT G W, MILLER M C. The flux of CO2 and CH4, from lakes and rivers in arctic Alaska[J]. Hydrobiologia, 1992, 240(1-3): 23 − 36. doi: 10.1007/BF00013449
|
[16] |
吴铭. 崇州市不同水体CO2、CH4和N2O通量变化特征及其影响因素研究[D]. 雅安: 四川农业大学, 2016.
|
[17] |
胡晓婷. 上海市主要河流水-气界面温室气体通量及影响因素研究[D]. 上海: 华东师范大学, 2017.
|
[18] |
SOUMIS N, DUCHEMIN E, CANUEL R, et al. Greenhouse gas emissions from reservoirs of the western United States[J]. Global Biogeochemical Cycles, 2004, 18(3): GB3022.
|
[19] |
商东耀, 肖启涛, 胡正华, 等. 富营养化湖区CH4排放特征及其影响因素[J]. 环境科学, 2018, 39(11): 5227 − 5236.
|
[20] |
谢恒, 龙丽, 肖尚斌, 等. 城市浅水河流冬夏季温室气体日变化及影响因素[J]. 三峡大学学报(自然科学版), 2017, 39(4): 31 − 35.
|
[21] |
张军伟, 雷丹, 肖尚斌, 等. 三峡库区香溪河秋末至中冬CO2和CH4分压特征分析[J]. 环境科学, 2016, 37(8): 2924 − 2931.
|
[22] |
龙丽, 肖尚斌, 张成, 等. 亚热带浅水池塘水-气界面甲烷通量特征[J]. 环境科学, 2016, 37(12): 4552 − 4559.
|
[23] |
宫健, 崔育倩, 谢文霞, 等. 滨海湿地CH4排放的研究进展[J]. 资源科学, 2018, 40(1): 173 − 184.
|
[24] |
TREMBLAY A, VARFALVY L, ROEHM C, et al. Greenhouse gas emissions-fluxes and processes: Hydroelectric reservoirs and natural environments[M]. New York: Springer, 2005.
|
[25] |
SCHRIER-UIJL A P, VERAART A J, LEFFEAAR P A, et al. Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands[J]. Biogeochemistry, 2011, 102(1/3): 265 − 279.
|
[26] |
张银龙. 湿地甲烷排放研究进展[J]. 环境科学进展, 1998, 6(1): 38 − 47.
|
[27] |
郝庆菊, 王跃思, 宋长春, 等. 三江平原湿地CH4排放通量研究[J]. 水土保持学报, 2004, 18(3): 194 − 199. doi: 10.3321/j.issn:1009-2242.2004.03.049
|
[28] |
ALLEN D E, DALAL R C, RENNENBERG H, et al. Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere[J]. Soil Biology and Biochemistry, 2007, 39(2): 622 − 631. doi: 10.1016/j.soilbio.2006.09.013
|
[29] |
DELAUNE R D, SMITH C J, PATRICK W H. Methane release from gulf coast wetlands[J]. Tellus, 2010, 35(1): 8 − 15.
|
[30] |
CROZIER C R, DELAUNE R D. Methane production by soils from different Louisiana marsh vegetation types[J]. Wetlands, 1996, 16(2): 121 − 126. doi: 10.1007/BF03160685
|
[31] |
姜欢欢, 孙志高, 王玲玲, 等. 秋季黄河口滨岸潮滩湿地系统CH4通量特征及影响因素研究[J]. 环境科学, 2012, 33(2): 565 − 573.
|
[32] |
SAVVICHEV A S, KOKRYATSKAYA N M, ZABELINA SA, et al. Microbial processes of the carbon and sulfur cycles in an ice-covered, iron-rich meromictic Lake Svetloe (Arkhangelsk region, Russia)[J]. Environmental Microbiology, 2017, 19(2): 659 − 672. doi: 10.1111/1462-2920.13591
|
[33] |
程炳红, 郝庆菊, 江长胜. 水库温室气体排放及其影响因素研究进展[J]. 湿地科学, 2012, 10(1): 121 − 128. doi: 10.3969/j.issn.1672-5948.2012.01.017
|
[34] |
ROSA L P, SANTOS M A D, MATVIENKO B, et al. Biogenic gas production from major Amazon reservoirs, Brazil[J]. Hydrological Processes, 2003, 17(7): 1443 − 1450. doi: 10.1002/hyp.1295
|
[35] |
杨平, 仝川. 淡水水生生态系统温室气体排放的主要途径及影响因素研究进展[J]. 生态学报, 2015, 35(20): 6868 − 6880.
|